![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fliftf | Unicode version |
Description: The domain and range of the function . (Contributed by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
flift.1 | |
flift.2 | |
flift.3 |
Ref | Expression |
---|---|
fliftf |
S
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 461 | . . . . 5 | |
2 | flift.1 | . . . . . . . . . . 11 | |
3 | flift.2 | . . . . . . . . . . 11 | |
4 | flift.3 | . . . . . . . . . . 11 | |
5 | 2, 3, 4 | fliftel 6207 | . . . . . . . . . 10 |
6 | 5 | exbidv 1714 | . . . . . . . . 9 |
7 | 6 | adantr 465 | . . . . . . . 8 |
8 | rexcom4 3129 | . . . . . . . . 9 | |
9 | elisset 3120 | . . . . . . . . . . . . . 14 | |
10 | 4, 9 | syl 16 | . . . . . . . . . . . . 13 |
11 | 10 | biantrud 507 | . . . . . . . . . . . 12 |
12 | 19.42v 1775 | . . . . . . . . . . . 12 | |
13 | 11, 12 | syl6rbbr 264 | . . . . . . . . . . 11 |
14 | 13 | rexbidva 2965 | . . . . . . . . . 10 |
15 | 14 | adantr 465 | . . . . . . . . 9 |
16 | 8, 15 | syl5bbr 259 | . . . . . . . 8 |
17 | 7, 16 | bitrd 253 | . . . . . . 7 |
18 | 17 | abbidv 2593 | . . . . . 6 |
19 | df-dm 5014 | . . . . . 6 | |
20 | eqid 2457 | . . . . . . 7 | |
21 | 20 | rnmpt 5253 | . . . . . 6 |
22 | 18, 19, 21 | 3eqtr4g 2523 | . . . . 5 |
23 | df-fn 5596 | . . . . 5 | |
24 | 1, 22, 23 | sylanbrc 664 | . . . 4 |
25 | 2, 3, 4 | fliftrel 6206 | . . . . . . 7 |
26 | 25 | adantr 465 | . . . . . 6 |
27 | rnss 5236 | . . . . . 6 | |
28 | 26, 27 | syl 16 | . . . . 5 |
29 | rnxpss 5444 | . . . . 5 | |
30 | 28, 29 | syl6ss 3515 | . . . 4 |
31 | df-f 5597 | . . . 4 | |
32 | 24, 30, 31 | sylanbrc 664 | . . 3 |
33 | 32 | ex 434 | . 2 |
34 | ffun 5738 | . 2 | |
35 | 33, 34 | impbid1 203 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 E. wex 1612
e. wcel 1818 { cab 2442 E. wrex 2808
C_ wss 3475 <. cop 4035 class class class wbr 4452
e. cmpt 4510 X. cxp 5002 dom cdm 5004
ran crn 5005 Fun wfun 5587 Fn wfn 5588
--> wf 5589 |
This theorem is referenced by: qliftf 7418 cygznlem2a 18606 pi1xfrf 21553 pi1cof 21559 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-fv 5601 |
Copyright terms: Public domain | W3C validator |