![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fmpt2co | Unicode version |
Description: Composition of two functions. Variation of fmptco 6064 when the second function has two arguments. (Contributed by Mario Carneiro, 8-Feb-2015.) |
Ref | Expression |
---|---|
fmpt2co.1 | |
fmpt2co.2 | |
fmpt2co.3 | |
fmpt2co.4 |
Ref | Expression |
---|---|
fmpt2co |
S
, ,, , ,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmpt2co.1 | . . . . . 6 | |
2 | 1 | ralrimivva 2878 | . . . . 5 |
3 | eqid 2457 | . . . . . 6 | |
4 | 3 | fmpt2 6867 | . . . . 5 |
5 | 2, 4 | sylib 196 | . . . 4 |
6 | nfcv 2619 | . . . . . . 7 | |
7 | nfcv 2619 | . . . . . . 7 | |
8 | nfcv 2619 | . . . . . . . 8 | |
9 | nfcsb1v 3450 | . . . . . . . 8 | |
10 | 8, 9 | nfcsb 3452 | . . . . . . 7 |
11 | nfcsb1v 3450 | . . . . . . 7 | |
12 | csbeq1a 3443 | . . . . . . . 8 | |
13 | csbeq1a 3443 | . . . . . . . 8 | |
14 | 12, 13 | sylan9eq 2518 | . . . . . . 7 |
15 | 6, 7, 10, 11, 14 | cbvmpt2 6376 | . . . . . 6 |
16 | vex 3112 | . . . . . . . . . 10 | |
17 | vex 3112 | . . . . . . . . . 10 | |
18 | 16, 17 | op2ndd 6811 | . . . . . . . . 9 |
19 | 18 | csbeq1d 3441 | . . . . . . . 8 |
20 | 16, 17 | op1std 6810 | . . . . . . . . . 10 |
21 | 20 | csbeq1d 3441 | . . . . . . . . 9 |
22 | 21 | csbeq2dv 3835 | . . . . . . . 8 |
23 | 19, 22 | eqtrd 2498 | . . . . . . 7 |
24 | 23 | mpt2mpt 6394 | . . . . . 6 |
25 | 15, 24 | eqtr4i 2489 | . . . . 5 |
26 | 25 | fmpt 6052 | . . . 4 |
27 | 5, 26 | sylibr 212 | . . 3 |
28 | fmpt2co.2 | . . . 4 | |
29 | 28, 25 | syl6eq 2514 | . . 3 |
30 | fmpt2co.3 | . . 3 | |
31 | 27, 29, 30 | fmptcos 6066 | . 2 |
32 | 23 | csbeq1d 3441 | . . . . 5 |
33 | 32 | mpt2mpt 6394 | . . . 4 |
34 | nfcv 2619 | . . . . 5 | |
35 | nfcv 2619 | . . . . 5 | |
36 | nfcv 2619 | . . . . . 6 | |
37 | 10, 36 | nfcsb 3452 | . . . . 5 |
38 | nfcv 2619 | . . . . . 6 | |
39 | 11, 38 | nfcsb 3452 | . . . . 5 |
40 | 14 | csbeq1d 3441 | . . . . 5 |
41 | 34, 35, 37, 39, 40 | cbvmpt2 6376 | . . . 4 |
42 | 33, 41 | eqtr4i 2489 | . . 3 |
43 | 1 | 3impb 1192 | . . . . 5 |
44 | nfcvd 2620 | . . . . . 6 | |
45 | fmpt2co.4 | . . . . . 6 | |
46 | 44, 45 | csbiegf 3458 | . . . . 5 |
47 | 43, 46 | syl 16 | . . . 4 |
48 | 47 | mpt2eq3dva 6361 | . . 3 |
49 | 42, 48 | syl5eq 2510 | . 2 |
50 | 31, 49 | eqtrd 2498 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
/\ w3a 973 = wceq 1395 e. wcel 1818
A. wral 2807 [_ csb 3434 <. cop 4035
e. cmpt 4510 X. cxp 5002 o. ccom 5008
--> wf 5589 ` cfv 5593 e. cmpt2 6298 c1st 6798
c2nd 6799 |
This theorem is referenced by: oprabco 6884 evlslem2 18180 txswaphmeolem 20305 xpstopnlem1 20310 stdbdxmet 21018 rrxds 21825 cnre2csqima 27893 cvmlift2lem7 28754 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-fv 5601 df-oprab 6300 df-mpt2 6301 df-1st 6800 df-2nd 6801 |
Copyright terms: Public domain | W3C validator |