![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fmptco | Unicode version |
Description: Composition of two functions expressed as ordered-pair class abstractions. If has the equation and the equation then has the equation . (Contributed by FL, 21-Jun-2012.) (Revised by Mario Carneiro, 24-Jul-2014.) |
Ref | Expression |
---|---|
fmptco.1 | |
fmptco.2 | |
fmptco.3 | |
fmptco.4 |
Ref | Expression |
---|---|
fmptco |
S
,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relco 5510 | . 2 | |
2 | funmpt 5629 | . . 3 | |
3 | funrel 5610 | . . 3 | |
4 | 2, 3 | ax-mp 5 | . 2 |
5 | fmptco.1 | . . . . . . . . . . . . 13 | |
6 | eqid 2457 | . . . . . . . . . . . . 13 | |
7 | 5, 6 | fmptd 6055 | . . . . . . . . . . . 12 |
8 | fmptco.2 | . . . . . . . . . . . . 13 | |
9 | 8 | feq1d 5722 | . . . . . . . . . . . 12 |
10 | 7, 9 | mpbird 232 | . . . . . . . . . . 11 |
11 | ffun 5738 | . . . . . . . . . . 11 | |
12 | 10, 11 | syl 16 | . . . . . . . . . 10 |
13 | funbrfv 5911 | . . . . . . . . . . 11 | |
14 | 13 | imp 429 | . . . . . . . . . 10 |
15 | 12, 14 | sylan 471 | . . . . . . . . 9 |
16 | 15 | eqcomd 2465 | . . . . . . . 8 |
17 | 16 | a1d 25 | . . . . . . 7 |
18 | 17 | expimpd 603 | . . . . . 6 |
19 | 18 | pm4.71rd 635 | . . . . 5 |
20 | 19 | exbidv 1714 | . . . 4 |
21 | fvex 5881 | . . . . . 6 | |
22 | breq2 4456 | . . . . . . 7 | |
23 | breq1 4455 | . . . . . . 7 | |
24 | 22, 23 | anbi12d 710 | . . . . . 6 |
25 | 21, 24 | ceqsexv 3146 | . . . . 5 |
26 | funfvbrb 6000 | . . . . . . . . 9 | |
27 | 12, 26 | syl 16 | . . . . . . . 8 |
28 | fdm 5740 | . . . . . . . . . 10 | |
29 | 10, 28 | syl 16 | . . . . . . . . 9 |
30 | 29 | eleq2d 2527 | . . . . . . . 8 |
31 | 27, 30 | bitr3d 255 | . . . . . . 7 |
32 | 8 | fveq1d 5873 | . . . . . . . 8 |
33 | fmptco.3 | . . . . . . . 8 | |
34 | eqidd 2458 | . . . . . . . 8 | |
35 | 32, 33, 34 | breq123d 4466 | . . . . . . 7 |
36 | 31, 35 | anbi12d 710 | . . . . . 6 |
37 | nfcv 2619 | . . . . . . . . 9 | |
38 | nfv 1707 | . . . . . . . . . 10 | |
39 | nffvmpt1 5879 | . . . . . . . . . . . 12 | |
40 | nfcv 2619 | . . . . . . . . . . . 12 | |
41 | nfcv 2619 | . . . . . . . . . . . 12 | |
42 | 39, 40, 41 | nfbr 4496 | . . . . . . . . . . 11 |
43 | nfcsb1v 3450 | . . . . . . . . . . . 12 | |
44 | 43 | nfeq2 2636 | . . . . . . . . . . 11 |
45 | 42, 44 | nfbi 1934 | . . . . . . . . . 10 |
46 | 38, 45 | nfim 1920 | . . . . . . . . 9 |
47 | fveq2 5871 | . . . . . . . . . . . 12 | |
48 | 47 | breq1d 4462 | . . . . . . . . . . 11 |
49 | csbeq1a 3443 | . . . . . . . . . . . 12 | |
50 | 49 | eqeq2d 2471 | . . . . . . . . . . 11 |
51 | 48, 50 | bibi12d 321 | . . . . . . . . . 10 |
52 | 51 | imbi2d 316 | . . . . . . . . 9 |
53 | vex 3112 | . . . . . . . . . . . 12 | |
54 | simpl 457 | . . . . . . . . . . . . . . 15 | |
55 | 54 | eleq1d 2526 | . . . . . . . . . . . . . 14 |
56 | simpr 461 | . . . . . . . . . . . . . . 15 | |
57 | fmptco.4 | . . . . . . . . . . . . . . . 16 | |
58 | 57 | adantr 465 | . . . . . . . . . . . . . . 15 |
59 | 56, 58 | eqeq12d 2479 | . . . . . . . . . . . . . 14 |
60 | 55, 59 | anbi12d 710 | . . . . . . . . . . . . 13 |
61 | df-mpt 4512 | . . . . . . . . . . . . 13 | |
62 | 60, 61 | brabga 4766 | . . . . . . . . . . . 12 |
63 | 5, 53, 62 | sylancl 662 | . . . . . . . . . . 11 |
64 | simpr 461 | . . . . . . . . . . . . 13 | |
65 | 6 | fvmpt2 5963 | . . . . . . . . . . . . 13 |
66 | 64, 5, 65 | syl2anc 661 | . . . . . . . . . . . 12 |
67 | 66 | breq1d 4462 | . . . . . . . . . . 11 |
68 | 5 | biantrurd 508 | . . . . . . . . . . 11 |
69 | 63, 67, 68 | 3bitr4d 285 | . . . . . . . . . 10 |
70 | 69 | expcom 435 | . . . . . . . . 9 |
71 | 37, 46, 52, 70 | vtoclgaf 3172 | . . . . . . . 8 |
72 | 71 | impcom 430 | . . . . . . 7 |
73 | 72 | pm5.32da 641 | . . . . . 6 |
74 | 36, 73 | bitrd 253 | . . . . 5 |
75 | 25, 74 | syl5bb 257 | . . . 4 |
76 | 20, 75 | bitrd 253 | . . 3 |
77 | vex 3112 | . . . 4 | |
78 | 77, 53 | opelco 5179 | . . 3 |
79 | df-mpt 4512 | . . . . 5 | |
80 | 79 | eleq2i 2535 | . . . 4 |
81 | nfv 1707 | . . . . . 6 | |
82 | 43 | nfeq2 2636 | . . . . . 6 |
83 | 81, 82 | nfan 1928 | . . . . 5 |
84 | nfv 1707 | . . . . 5 | |
85 | eleq1 2529 | . . . . . 6 | |
86 | 49 | eqeq2d 2471 | . . . . . 6 |
87 | 85, 86 | anbi12d 710 | . . . . 5 |
88 | eqeq1 2461 | . . . . . 6 | |
89 | 88 | anbi2d 703 | . . . . 5 |
90 | 83, 84, 77, 53, 87, 89 | opelopabf 4777 | . . . 4 |
91 | 80, 90 | bitri 249 | . . 3 |
92 | 76, 78, 91 | 3bitr4g 288 | . 2 |
93 | 1, 4, 92 | eqrelrdv 5104 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 E. wex 1612
e. wcel 1818 cvv 3109
[_ csb 3434 <. cop 4035 class class class wbr 4452
{ copab 4509 e. cmpt 4510
dom cdm 5004 o. ccom 5008 Rel wrel 5009
Fun wfun 5587
--> wf 5589 ` cfv 5593 |
This theorem is referenced by: fmptcof 6065 fcompt 6067 fcoconst 6068 ofco 6560 ccatco 12801 lo1o12 13356 rlimcn1 13411 rlimcn1b 13412 rlimdiv 13468 ackbijnn 13640 setcepi 15415 prf1st 15473 prf2nd 15474 hofcllem 15527 prdsidlem 15952 pws0g 15956 pwsco1mhm 16001 pwsco2mhm 16002 pwsinvg 16182 pwssub 16183 galactghm 16428 efginvrel1 16746 frgpup3lem 16795 gsumzf1o 16917 gsumzf1oOLD 16920 gsumconst 16954 gsummptshft 16956 gsumzmhm 16957 gsumzmhmOLD 16958 gsummhm2 16961 gsummhm2OLD 16962 gsummptmhm 16963 gsumsub 16974 gsumsubOLD 16975 gsum2dlem2 16998 gsum2dOLD 17000 dprdfsub 17061 dprdfsubOLD 17068 lmhmvsca 17691 psrass1lem 18029 psrlinv 18050 psrcom 18064 evlslem2 18180 coe1fval3 18247 psropprmul 18279 coe1z 18304 coe1mul2 18310 coe1tm 18314 ply1coe 18337 ply1coeOLD 18338 evls1sca 18360 frgpcyg 18612 evpmodpmf1o 18632 mhmvlin 18899 ofco2 18953 mdetleib2 19090 mdetralt 19110 smadiadetlem3 19170 ptrescn 20140 lmcn2 20150 qtopeu 20217 flfcnp2 20508 tgpconcomp 20611 tsmsmhm 20648 tsmssub 20651 tsmsxplem1 20655 negfcncf 21423 pcopt 21522 pcopt2 21523 pi1xfrcnvlem 21556 ovolctb 21901 ovolfs2 21980 uniioombllem2 21992 uniioombllem3 21994 ismbf 22037 mbfconst 22042 ismbfcn2 22046 itg1climres 22121 iblabslem 22234 iblabs 22235 bddmulibl 22245 limccnp 22295 limccnp2 22296 limcco 22297 dvcof 22351 dvcjbr 22352 dvcj 22353 dvfre 22354 dvmptcj 22371 dvmptco 22375 dvcnvlem 22377 dvef 22381 dvlip 22394 dvlipcn 22395 itgsubstlem 22449 plypf1 22609 plyco 22638 dgrcolem1 22670 dgrcolem2 22671 dgrco 22672 plycjlem 22673 taylply2 22763 logcn 23028 leibpi 23273 efrlim 23299 jensenlem2 23317 amgmlem 23319 ftalem7 23352 lgseisenlem4 23627 dchrisum0 23705 cofmpt 27504 ofcfval4 28104 eulerpartgbij 28311 dstfrvclim1 28416 lgamgulmlem2 28572 lgamcvg2 28597 cvmliftlem6 28735 cvmliftphtlem 28762 cvmlift3lem5 28768 elmsubrn 28888 msubco 28891 circum 29040 mblfinlem2 30052 volsupnfl 30059 itgaddnc 30075 itgmulc2nc 30083 ftc1anclem1 30090 ftc1anclem2 30091 ftc1anclem3 30092 ftc1anclem4 30093 ftc1anclem5 30094 ftc1anclem6 30095 ftc1anclem7 30096 ftc1anclem8 30097 fnopabco 30213 upixp 30220 mendassa 31143 cncfcompt 31685 dvcosax 31723 dirkercncflem4 31888 fourierdlem111 32000 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-fv 5601 |
Copyright terms: Public domain | W3C validator |