![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fmptcof | Unicode version |
Description: Version of fmptco 6064 where needn't be distinct from . (Contributed by NM, 27-Dec-2014.) |
Ref | Expression |
---|---|
fmptcof.1 | |
fmptcof.2 | |
fmptcof.3 | |
fmptcof.4 |
Ref | Expression |
---|---|
fmptcof |
S
, ,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmptcof.1 | . . . . 5 | |
2 | nfcsb1v 3450 | . . . . . . 7 | |
3 | 2 | nfel1 2635 | . . . . . 6 |
4 | csbeq1a 3443 | . . . . . . 7 | |
5 | 4 | eleq1d 2526 | . . . . . 6 |
6 | 3, 5 | rspc 3204 | . . . . 5 |
7 | 1, 6 | mpan9 469 | . . . 4 |
8 | fmptcof.2 | . . . . 5 | |
9 | nfcv 2619 | . . . . . 6 | |
10 | 9, 2, 4 | cbvmpt 4542 | . . . . 5 |
11 | 8, 10 | syl6eq 2514 | . . . 4 |
12 | fmptcof.3 | . . . . 5 | |
13 | nfcv 2619 | . . . . . 6 | |
14 | nfcsb1v 3450 | . . . . . 6 | |
15 | csbeq1a 3443 | . . . . . 6 | |
16 | 13, 14, 15 | cbvmpt 4542 | . . . . 5 |
17 | 12, 16 | syl6eq 2514 | . . . 4 |
18 | csbeq1 3437 | . . . 4 | |
19 | 7, 11, 17, 18 | fmptco 6064 | . . 3 |
20 | nfcv 2619 | . . . 4 | |
21 | nfcv 2619 | . . . . 5 | |
22 | 2, 21 | nfcsb 3452 | . . . 4 |
23 | 4 | csbeq1d 3441 | . . . 4 |
24 | 20, 22, 23 | cbvmpt 4542 | . . 3 |
25 | 19, 24 | syl6eqr 2516 | . 2 |
26 | eqid 2457 | . . . 4 | |
27 | nfcvd 2620 | . . . . . 6 | |
28 | fmptcof.4 | . . . . . 6 | |
29 | 27, 28 | csbiegf 3458 | . . . . 5 |
30 | 29 | ralimi 2850 | . . . 4 |
31 | mpteq12 4531 | . . . 4 | |
32 | 26, 30, 31 | sylancr 663 | . . 3 |
33 | 1, 32 | syl 16 | . 2 |
34 | 25, 33 | eqtrd 2498 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 = wceq 1395
e. wcel 1818 A. wral 2807 [_ csb 3434
e. cmpt 4510 o. ccom 5008 |
This theorem is referenced by: fmptcos 6066 yonedalem3b 15548 gsumcom2 17003 evl1sca 18370 cnmptk1 20182 cnmpt1k 20183 cnmptkk 20184 cncfmpt1f 21417 copco 21518 pcoass 21524 sincn 22839 coscn 22840 lgseisenlem3 23626 fcomptf 27503 eulerpartgbij 28311 cncfcompt2 31702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-fv 5601 |
Copyright terms: Public domain | W3C validator |