![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fnasrn | Unicode version |
Description: A function expressed as the range of another function. (Contributed by Mario Carneiro, 22-Jun-2013.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
dfmpt.1 |
Ref | Expression |
---|---|
fnasrn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfmpt.1 | . . 3 | |
2 | 1 | dfmpt 6076 | . 2 |
3 | eqid 2457 | . . . . 5 | |
4 | 3 | rnmpt 5253 | . . . 4 |
5 | elsn 4043 | . . . . . 6 | |
6 | 5 | rexbii 2959 | . . . . 5 |
7 | 6 | abbii 2591 | . . . 4 |
8 | 4, 7 | eqtr4i 2489 | . . 3 |
9 | df-iun 4332 | . . 3 | |
10 | 8, 9 | eqtr4i 2489 | . 2 |
11 | 2, 10 | eqtr4i 2489 | 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1395 e. wcel 1818
{ cab 2442 E. wrex 2808 cvv 3109
{ csn 4029 <. cop 4035 U_ ciun 4330
e. cmpt 4510 ran crn 5005 |
This theorem is referenced by: resfunexg 6137 idref 6153 gruf 9210 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 |
Copyright terms: Public domain | W3C validator |