![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fndmdif | Unicode version |
Description: Two ways to express the locus of differences between two functions. (Contributed by Stefan O'Rear, 17-Jan-2015.) |
Ref | Expression |
---|---|
fndmdif |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss 3630 | . . . . 5 | |
2 | dmss 5207 | . . . . 5 | |
3 | 1, 2 | ax-mp 5 | . . . 4 |
4 | fndm 5685 | . . . . 5 | |
5 | 4 | adantr 465 | . . . 4 |
6 | 3, 5 | syl5sseq 3551 | . . 3 |
7 | dfss1 3702 | . . 3 | |
8 | 6, 7 | sylib 196 | . 2 |
9 | vex 3112 | . . . . 5 | |
10 | 9 | eldm 5205 | . . . 4 |
11 | eqcom 2466 | . . . . . . . . 9 | |
12 | fnbrfvb 5913 | . . . . . . . . 9 | |
13 | 11, 12 | syl5bb 257 | . . . . . . . 8 |
14 | 13 | adantll 713 | . . . . . . 7 |
15 | 14 | necon3abid 2703 | . . . . . 6 |
16 | fvex 5881 | . . . . . . 7 | |
17 | breq2 4456 | . . . . . . . 8 | |
18 | 17 | notbid 294 | . . . . . . 7 |
19 | 16, 18 | ceqsexv 3146 | . . . . . 6 |
20 | 15, 19 | syl6bbr 263 | . . . . 5 |
21 | eqcom 2466 | . . . . . . . . . 10 | |
22 | fnbrfvb 5913 | . . . . . . . . . 10 | |
23 | 21, 22 | syl5bb 257 | . . . . . . . . 9 |
24 | 23 | adantlr 714 | . . . . . . . 8 |
25 | 24 | anbi1d 704 | . . . . . . 7 |
26 | brdif 4502 | . . . . . . 7 | |
27 | 25, 26 | syl6bbr 263 | . . . . . 6 |
28 | 27 | exbidv 1714 | . . . . 5 |
29 | 20, 28 | bitr2d 254 | . . . 4 |
30 | 10, 29 | syl5bb 257 | . . 3 |
31 | 30 | rabbi2dva 3705 | . 2 |
32 | 8, 31 | eqtr3d 2500 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 = wceq 1395
E. wex 1612 e. wcel 1818 =/= wne 2652
{ crab 2811 \ cdif 3472 i^i cin 3474
C_ wss 3475 class class class wbr 4452
dom cdm 5004 Fn wfn 5588 ` cfv 5593 |
This theorem is referenced by: fndmdifcom 5992 fndmdifeq0 5993 fndifnfp 6100 wemapsolem 7996 wemapso2OLD 7998 wemapso2lem 7999 dsmmbas2 18768 frlmbas 18786 frlmbasOLD 18787 ptcmplem2 20553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-iota 5556 df-fun 5595 df-fn 5596 df-fv 5601 |
Copyright terms: Public domain | W3C validator |