![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fnfvima | Unicode version |
Description: The function value of an
operand in a set is contained in the image of
that set, using the Fn abbreviation.
(Contributed by Stefan O'Rear,
10-Mar-2015.) |
Ref | Expression |
---|---|
fnfvima |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnfun 5683 | . . . 4 | |
2 | 1 | 3ad2ant1 1017 | . . 3 |
3 | simp2 997 | . . . 4 | |
4 | fndm 5685 | . . . . 5 | |
5 | 4 | 3ad2ant1 1017 | . . . 4 |
6 | 3, 5 | sseqtr4d 3540 | . . 3 |
7 | 2, 6 | jca 532 | . 2 |
8 | simp3 998 | . 2 | |
9 | funfvima2 6148 | . 2 | |
10 | 7, 8, 9 | sylc 60 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
/\ w3a 973 = wceq 1395 e. wcel 1818
C_ wss 3475 dom cdm 5004 " cima 5007
Fun wfun 5587
Fn wfn 5588 ` cfv 5593 |
This theorem is referenced by: isomin 6233 isofrlem 6236 fnwelem 6915 php3 7723 fissuni 7845 unxpwdom2 8035 cantnflt 8112 cantnfltOLD 8142 mapfienOLD 8159 dfac12lem2 8545 ackbij2 8644 isf34lem7 8780 isf34lem6 8781 zorn2lem2 8898 ttukeylem5 8914 tskuni 9182 axpre-sup 9567 limsupval2 13303 mhmima 15994 ghmnsgima 16290 psgnunilem1 16518 dprdfeq0 17062 dprdfeq0OLD 17069 dprd2dlem1 17090 lmhmima 17693 lmcnp 19805 basqtop 20212 tgqtop 20213 kqfvima 20231 reghmph 20294 uzrest 20398 qustgpopn 20618 qustgplem 20619 cphsqrtcl 21631 lhop 22417 ig1peu 22572 ig1pdvds 22577 plypf1 22609 f1otrg 24174 fimaproj 27836 txomap 27837 cvmopnlem 28723 mrsubrn 28873 msubrn 28889 nobndlem8 29459 cnambfre 30063 ftc1anclem7 30096 ftc1anc 30098 isnumbasgrplem1 31050 mgmhmima 32490 wfximgfd 37979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-fv 5601 |
Copyright terms: Public domain | W3C validator |