![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fnmpti | Unicode version |
Description: Functionality and domain of an ordered-pair class abstraction. (Contributed by NM, 29-Jan-2004.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
fnmpti.1 | |
fnmpti.2 |
Ref | Expression |
---|---|
fnmpti |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnmpti.1 | . . 3 | |
2 | 1 | rgenw 2818 | . 2 |
3 | fnmpti.2 | . . 3 | |
4 | 3 | mptfng 5711 | . 2 |
5 | 2, 4 | mpbi 208 | 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1395 e. wcel 1818
A. wral 2807 cvv 3109
e. cmpt 4510 Fn wfn 5588 |
This theorem is referenced by: dmmpti 5715 fconst 5776 dffn5 5918 eufnfv 6146 idref 6153 offn 6551 caofinvl 6567 fo1st 6820 fo2nd 6821 reldm 6851 mapsnf1o2 7486 unfilem2 7805 fidomdm 7822 pwfilem 7834 noinfep 8097 aceq3lem 8522 dfac4 8524 ackbij2lem2 8641 cfslb2n 8669 axcc2lem 8837 konigthlem 8964 rankcf 9176 tskuni 9182 seqf1o 12148 ccatlen 12594 ccatvalfn 12599 swrdlen 12650 swrdvalfn 12663 swrdswrd 12685 sqrtf 13196 mptfzshft 13593 fsumrev 13594 fprodrev 13781 efcvgfsum 13821 prmreclem2 14435 1arith 14445 vdwlem6 14504 vdwlem8 14506 slotfn 14646 topnfn 14823 fnmre 14988 cidffn 15075 cidfn 15076 funcres 15265 yonedainv 15550 fn0g 15889 grpinvfn 16090 conjnmz 16300 psgnfn 16526 odf 16561 sylow1lem4 16621 pgpssslw 16634 sylow2blem3 16642 sylow3lem2 16648 cygctb 16894 dprd2da 17091 fnmgp 17143 rlmfn 17836 rrgsupp 17939 asclfn 17985 evlslem1 18184 frlmup4 18835 mdetrlin 19104 fncld 19523 hauseqlcld 20147 kqf 20248 filunirn 20383 fmf 20446 txflf 20507 clsnsg 20608 tgpconcomp 20611 qustgpopn 20618 qustgplem 20619 ustfn 20704 xmetunirn 20840 met1stc 21024 rrxmvallem 21831 ovolf 21893 vitali 22022 i1fmulc 22110 mbfi1fseqlem4 22125 itg2seq 22149 itg2monolem1 22157 i1fibl 22214 fncpn 22336 lhop1lem 22414 mdegxrf 22468 aannenlem3 22726 efabl 22937 logccv 23044 padicabvf 23816 mptelee 24198 wlkiswwlk2lem1 24691 clwlkisclwwlklem2a2 24780 fngid 25216 grpoinvf 25242 occllem 26221 pjfni 26619 pjmfn 26633 rnbra 27026 bra11 27027 kbass2 27036 hmopidmchi 27070 xppreima2 27488 abfmpunirn 27490 dmct 27537 fimaproj 27836 locfinreflem 27843 ofcfn 28099 sxbrsigalem3 28243 eulerpartgbij 28311 sseqfv1 28328 sseqfn 28329 sseqf 28331 sseqfv2 28333 signstlen 28524 msubrn 28889 msrf 28902 faclimlem1 29168 mblfinlem2 30052 volsupnfl 30059 cnambfre 30063 itg2addnclem2 30067 itg2addnclem3 30068 ftc1anclem5 30094 ftc1anclem7 30096 sdclem2 30235 prdsbnd2 30291 rrncmslem 30328 rmxypairf1o 30847 hbtlem6 31078 dgraaf 31096 cytpfn 31168 uzmptshftfval 31251 binomcxplemrat 31255 addrfn 31381 subrfn 31382 mulvfn 31383 fourierdlem62 31951 fourierdlem70 31959 fourierdlem71 31960 zrinitorngc 32808 zrtermorngc 32809 zrtermoringc 32878 diafn 36761 cdlemm10N 36845 dibfna 36881 lcfrlem9 37277 mapd1o 37375 hdmapfnN 37559 hgmapfnN 37618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-fun 5595 df-fn 5596 |
Copyright terms: Public domain | W3C validator |