![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fnprOLD | Unicode version |
Description: Obsolete version of fnprb 6129 as of 29-Dec-2018. Representation as a set of pairs of a function whose domain has two distinct elements. (Contributed by FL, 26-Jun-2011.) (Proof shortened by Scott Fenton, 12-Oct-2017.) (Revised by NM, 10-Dec-2017.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
fnprOLD.1 | |
fnprOLD.2 |
Ref | Expression |
---|---|
fnprOLD |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fndm 5685 | . . . . 5 | |
2 | fvex 5881 | . . . . . 6 | |
3 | fvex 5881 | . . . . . 6 | |
4 | 2, 3 | dmprop 5488 | . . . . 5 |
5 | 1, 4 | syl6eqr 2516 | . . . 4 |
6 | 5 | adantl 466 | . . 3 |
7 | 1 | adantl 466 | . . . . . 6 |
8 | 7 | eleq2d 2527 | . . . . 5 |
9 | vex 3112 | . . . . . . 7 | |
10 | 9 | elpr 4047 | . . . . . 6 |
11 | fnprOLD.1 | . . . . . . . . . . 11 | |
12 | 11, 2 | fvpr1 6114 | . . . . . . . . . 10 |
13 | 12 | adantr 465 | . . . . . . . . 9 |
14 | 13 | eqcomd 2465 | . . . . . . . 8 |
15 | fveq2 5871 | . . . . . . . . 9 | |
16 | fveq2 5871 | . . . . . . . . 9 | |
17 | 15, 16 | eqeq12d 2479 | . . . . . . . 8 |
18 | 14, 17 | syl5ibrcom 222 | . . . . . . 7 |
19 | fnprOLD.2 | . . . . . . . . . . 11 | |
20 | 19, 3 | fvpr2 6115 | . . . . . . . . . 10 |
21 | 20 | adantr 465 | . . . . . . . . 9 |
22 | 21 | eqcomd 2465 | . . . . . . . 8 |
23 | fveq2 5871 | . . . . . . . . 9 | |
24 | fveq2 5871 | . . . . . . . . 9 | |
25 | 23, 24 | eqeq12d 2479 | . . . . . . . 8 |
26 | 22, 25 | syl5ibrcom 222 | . . . . . . 7 |
27 | 18, 26 | jaod 380 | . . . . . 6 |
28 | 10, 27 | syl5bi 217 | . . . . 5 |
29 | 8, 28 | sylbid 215 | . . . 4 |
30 | 29 | ralrimiv 2869 | . . 3 |
31 | fnfun 5683 | . . . 4 | |
32 | 11, 19, 2, 3 | funpr 5644 | . . . 4 |
33 | eqfunfv 5986 | . . . 4 | |
34 | 31, 32, 33 | syl2anr 478 | . . 3 |
35 | 6, 30, 34 | mpbir2and 922 | . 2 |
36 | 4 | a1i 11 | . . . 4 |
37 | df-fn 5596 | . . . 4 | |
38 | 32, 36, 37 | sylanbrc 664 | . . 3 |
39 | fneq1 5674 | . . . 4 | |
40 | 39 | biimprd 223 | . . 3 |
41 | 38, 40 | mpan9 469 | . 2 |
42 | 35, 41 | impbida 832 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
\/ wo 368 /\ wa 369 = wceq 1395
e. wcel 1818 =/= wne 2652 A. wral 2807
cvv 3109
{ cpr 4031 <. cop 4035 dom cdm 5004
Fun wfun 5587
Fn wfn 5588 ` cfv 5593 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-fv 5601 |
Copyright terms: Public domain | W3C validator |