![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fnprb | Unicode version |
Description: A function whose domain has at most two elements can be represented as a set of at most two ordered pairs. (Contributed by FL, 26-Jun-2011.) (Proof shortened by Scott Fenton, 12-Oct-2017.) Revised to eliminate unnecessary antecedent . (Revised by NM, 29-Dec-2018.) |
Ref | Expression |
---|---|
fnprb.1 | |
fnprb.2 |
Ref | Expression |
---|---|
fnprb |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnprb.1 | . . . . . 6 | |
2 | 1 | fnsnb 6090 | . . . . 5 |
3 | dfsn2 4042 | . . . . . 6 | |
4 | 3 | fneq2i 5681 | . . . . 5 |
5 | dfsn2 4042 | . . . . . 6 | |
6 | 5 | eqeq2i 2475 | . . . . 5 |
7 | 2, 4, 6 | 3bitr3i 275 | . . . 4 |
8 | 7 | a1i 11 | . . 3 |
9 | preq2 4110 | . . . 4 | |
10 | 9 | fneq2d 5677 | . . 3 |
11 | id 22 | . . . . . 6 | |
12 | fveq2 5871 | . . . . . 6 | |
13 | 11, 12 | opeq12d 4225 | . . . . 5 |
14 | 13 | preq2d 4116 | . . . 4 |
15 | 14 | eqeq2d 2471 | . . 3 |
16 | 8, 10, 15 | 3bitr3d 283 | . 2 |
17 | fndm 5685 | . . . . . 6 | |
18 | fvex 5881 | . . . . . . 7 | |
19 | fvex 5881 | . . . . . . 7 | |
20 | 18, 19 | dmprop 5488 | . . . . . 6 |
21 | 17, 20 | syl6eqr 2516 | . . . . 5 |
22 | 21 | adantl 466 | . . . 4 |
23 | 17 | adantl 466 | . . . . . . 7 |
24 | 23 | eleq2d 2527 | . . . . . 6 |
25 | vex 3112 | . . . . . . . 8 | |
26 | 25 | elpr 4047 | . . . . . . 7 |
27 | 1, 18 | fvpr1 6114 | . . . . . . . . . . 11 |
28 | 27 | adantr 465 | . . . . . . . . . 10 |
29 | 28 | eqcomd 2465 | . . . . . . . . 9 |
30 | fveq2 5871 | . . . . . . . . . 10 | |
31 | fveq2 5871 | . . . . . . . . . 10 | |
32 | 30, 31 | eqeq12d 2479 | . . . . . . . . 9 |
33 | 29, 32 | syl5ibrcom 222 | . . . . . . . 8 |
34 | fnprb.2 | . . . . . . . . . . . 12 | |
35 | 34, 19 | fvpr2 6115 | . . . . . . . . . . 11 |
36 | 35 | adantr 465 | . . . . . . . . . 10 |
37 | 36 | eqcomd 2465 | . . . . . . . . 9 |
38 | fveq2 5871 | . . . . . . . . . 10 | |
39 | fveq2 5871 | . . . . . . . . . 10 | |
40 | 38, 39 | eqeq12d 2479 | . . . . . . . . 9 |
41 | 37, 40 | syl5ibrcom 222 | . . . . . . . 8 |
42 | 33, 41 | jaod 380 | . . . . . . 7 |
43 | 26, 42 | syl5bi 217 | . . . . . 6 |
44 | 24, 43 | sylbid 215 | . . . . 5 |
45 | 44 | ralrimiv 2869 | . . . 4 |
46 | fnfun 5683 | . . . . 5 | |
47 | 1, 34, 18, 19 | funpr 5644 | . . . . 5 |
48 | eqfunfv 5986 | . . . . 5 | |
49 | 46, 47, 48 | syl2anr 478 | . . . 4 |
50 | 22, 45, 49 | mpbir2and 922 | . . 3 |
51 | 20 | a1i 11 | . . . . 5 |
52 | df-fn 5596 | . . . . 5 | |
53 | 47, 51, 52 | sylanbrc 664 | . . . 4 |
54 | fneq1 5674 | . . . . 5 | |
55 | 54 | biimprd 223 | . . . 4 |
56 | 53, 55 | mpan9 469 | . . 3 |
57 | 50, 56 | impbida 832 | . 2 |
58 | 16, 57 | pm2.61ine 2770 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 \/ wo 368
/\ wa 369 = wceq 1395 e. wcel 1818
=/= wne 2652 A. wral 2807 cvv 3109
{ csn 4029 { cpr 4031 <. cop 4035
dom cdm 5004 Fun wfun 5587 Fn wfn 5588
` cfv 5593 |
This theorem is referenced by: wrd2pr2op 12885 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 |
Copyright terms: Public domain | W3C validator |