MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnrel Unicode version

Theorem fnrel 5684
Description: A function with domain is a relation. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
fnrel

Proof of Theorem fnrel
StepHypRef Expression
1 fnfun 5683 . 2
2 funrel 5610 . 2
31, 2syl 16 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  Relwrel 5009  Funwfun 5587  Fnwfn 5588
This theorem is referenced by:  fnbr  5688  fnresdm  5695  fn0  5705  frel  5739  fcoi2  5765  f1rel  5789  f1ocnv  5833  dffn5  5918  fnsnfv  5933  fconst5  6128  fnex  6139  fnexALT  6766  tz7.48-2  7126  zorn2lem4  8900  imasvscafn  14934  2oppchomf  15119  idssxp  27469  feqmptdf  27501  fnresdmss  31443  dfafn5a  32245  resfnfinfin  32310  bnj66  33918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371  df-fun 5595  df-fn 5596
  Copyright terms: Public domain W3C validator