![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fnsnb | Unicode version |
Description: A function whose domain is a singleton can be represented as a singleton of an ordered pair. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) Revised to add reverse implication. (Revised by NM, 29-Dec-2018.) |
Ref | Expression |
---|---|
fnsnb.1 |
Ref | Expression |
---|---|
fnsnb |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnresdm 5695 | . . . . . . . 8 | |
2 | fnfun 5683 | . . . . . . . . 9 | |
3 | funressn 6084 | . . . . . . . . 9 | |
4 | 2, 3 | syl 16 | . . . . . . . 8 |
5 | 1, 4 | eqsstr3d 3538 | . . . . . . 7 |
6 | 5 | sseld 3502 | . . . . . 6 |
7 | elsni 4054 | . . . . . 6 | |
8 | 6, 7 | syl6 33 | . . . . 5 |
9 | df-fn 5596 | . . . . . . . 8 | |
10 | fnsnb.1 | . . . . . . . . . . 11 | |
11 | 10 | snid 4057 | . . . . . . . . . 10 |
12 | eleq2 2530 | . . . . . . . . . 10 | |
13 | 11, 12 | mpbiri 233 | . . . . . . . . 9 |
14 | 13 | anim2i 569 | . . . . . . . 8 |
15 | 9, 14 | sylbi 195 | . . . . . . 7 |
16 | funfvop 5999 | . . . . . . 7 | |
17 | 15, 16 | syl 16 | . . . . . 6 |
18 | eleq1 2529 | . . . . . 6 | |
19 | 17, 18 | syl5ibrcom 222 | . . . . 5 |
20 | 8, 19 | impbid 191 | . . . 4 |
21 | elsn 4043 | . . . 4 | |
22 | 20, 21 | syl6bbr 263 | . . 3 |
23 | 22 | eqrdv 2454 | . 2 |
24 | fvex 5881 | . . . 4 | |
25 | 10, 24 | fnsn 5646 | . . 3 |
26 | fneq1 5674 | . . 3 | |
27 | 25, 26 | mpbiri 233 | . 2 |
28 | 23, 27 | impbii 188 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 /\ wa 369
= wceq 1395 e. wcel 1818 cvv 3109
C_ wss 3475 { csn 4029 <. cop 4035
dom cdm 5004 |` cres 5006 Fun wfun 5587
Fn wfn 5588 ` cfv 5593 |
This theorem is referenced by: fnprb 6129 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 |
Copyright terms: Public domain | W3C validator |