![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fnsuppres | Unicode version |
Description: Two ways to express restriction of a support set. (Contributed by Stefan O'Rear, 5-Feb-2015.) (Revised by AV, 28-May-2019.) |
Ref | Expression |
---|---|
fnsuppres |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fndm 5685 | . . . . . 6 | |
2 | rabeq 3103 | . . . . . 6 | |
3 | 1, 2 | syl 16 | . . . . 5 |
4 | 3 | 3ad2ant1 1017 | . . . 4 |
5 | 4 | sseq1d 3530 | . . 3 |
6 | unss 3677 | . . . . 5 | |
7 | ssrab2 3584 | . . . . . 6 | |
8 | 7 | biantrur 506 | . . . . 5 |
9 | rabun2 3776 | . . . . . 6 | |
10 | 9 | sseq1i 3527 | . . . . 5 |
11 | 6, 8, 10 | 3bitr4ri 278 | . . . 4 |
12 | rabss 3576 | . . . . 5 | |
13 | fvres 5885 | . . . . . . . . 9 | |
14 | 13 | adantl 466 | . . . . . . . 8 |
15 | simp2r 1023 | . . . . . . . . 9 | |
16 | fvconst2g 6124 | . . . . . . . . 9 | |
17 | 15, 16 | sylan 471 | . . . . . . . 8 |
18 | 14, 17 | eqeq12d 2479 | . . . . . . 7 |
19 | nne 2658 | . . . . . . . 8 | |
20 | 19 | a1i 11 | . . . . . . 7 |
21 | id 22 | . . . . . . . . 9 | |
22 | simp3 998 | . . . . . . . . 9 | |
23 | minel 3882 | . . . . . . . . 9 | |
24 | 21, 22, 23 | syl2anr 478 | . . . . . . . 8 |
25 | mtt 339 | . . . . . . . 8 | |
26 | 24, 25 | syl 16 | . . . . . . 7 |
27 | 18, 20, 26 | 3bitr2rd 282 | . . . . . 6 |
28 | 27 | ralbidva 2893 | . . . . 5 |
29 | 12, 28 | syl5bb 257 | . . . 4 |
30 | 11, 29 | syl5bb 257 | . . 3 |
31 | 5, 30 | bitrd 253 | . 2 |
32 | fnfun 5683 | . . . . . . 7 | |
33 | 32 | 3anim1i 1182 | . . . . . 6 |
34 | 33 | 3expb 1197 | . . . . 5 |
35 | suppval1 6924 | . . . . 5 | |
36 | 34, 35 | syl 16 | . . . 4 |
37 | 36 | 3adant3 1016 | . . 3 |
38 | 37 | sseq1d 3530 | . 2 |
39 | simp1 996 | . . . 4 | |
40 | ssun2 3667 | . . . . 5 | |
41 | 40 | a1i 11 | . . . 4 |
42 | fnssres 5699 | . . . 4 | |
43 | 39, 41, 42 | syl2anc 661 | . . 3 |
44 | fnconstg 5778 | . . . . 5 | |
45 | 44 | adantl 466 | . . . 4 |
46 | 45 | 3ad2ant2 1018 | . . 3 |
47 | eqfnfv 5981 | . . 3 | |
48 | 43, 46, 47 | syl2anc 661 | . 2 |
49 | 31, 38, 48 | 3bitr4d 285 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 /\ w3a 973
= wceq 1395 e. wcel 1818 =/= wne 2652
A. wral 2807 { crab 2811 u. cun 3473
i^i cin 3474 C_ wss 3475 c0 3784 { csn 4029 X. cxp 5002
dom cdm 5004 |` cres 5006 Fun wfun 5587
Fn wfn 5588 ` cfv 5593 (class class class)co 6296
csupp 6918 |
This theorem is referenced by: fnsuppeq0 6947 frlmsslss2 18805 resf1o 27553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-supp 6919 |
Copyright terms: Public domain | W3C validator |