![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fnsuppresOLD | Unicode version |
Description: Two ways to express restriction of a support set. (Contributed by Stefan O'Rear, 5-Feb-2015.) Obsolete version of fnsuppres 6946 as of 28-May-2019. (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
fnsuppresOLD |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unss 3677 | . . . 4 | |
2 | ssrab2 3584 | . . . . 5 | |
3 | 2 | biantrur 506 | . . . 4 |
4 | rabun2 3776 | . . . . 5 | |
5 | 4 | sseq1i 3527 | . . . 4 |
6 | 1, 3, 5 | 3bitr4ri 278 | . . 3 |
7 | rabss 3576 | . . . 4 | |
8 | fvres 5885 | . . . . . . . 8 | |
9 | 8 | adantl 466 | . . . . . . 7 |
10 | fvconst2g 6124 | . . . . . . . 8 | |
11 | 10 | 3ad2antl3 1160 | . . . . . . 7 |
12 | 9, 11 | eqeq12d 2479 | . . . . . 6 |
13 | nne 2658 | . . . . . . 7 | |
14 | 13 | a1i 11 | . . . . . 6 |
15 | id 22 | . . . . . . . 8 | |
16 | simp2 997 | . . . . . . . 8 | |
17 | minel 3882 | . . . . . . . 8 | |
18 | 15, 16, 17 | syl2anr 478 | . . . . . . 7 |
19 | mtt 339 | . . . . . . 7 | |
20 | 18, 19 | syl 16 | . . . . . 6 |
21 | 12, 14, 20 | 3bitr2rd 282 | . . . . 5 |
22 | 21 | ralbidva 2893 | . . . 4 |
23 | 7, 22 | syl5bb 257 | . . 3 |
24 | 6, 23 | syl5bb 257 | . 2 |
25 | fnniniseg2OLD 6011 | . . . 4 | |
26 | 25 | 3ad2ant1 1017 | . . 3 |
27 | 26 | sseq1d 3530 | . 2 |
28 | simp1 996 | . . . 4 | |
29 | ssun2 3667 | . . . . 5 | |
30 | 29 | a1i 11 | . . . 4 |
31 | fnssres 5699 | . . . 4 | |
32 | 28, 30, 31 | syl2anc 661 | . . 3 |
33 | fnconstg 5778 | . . . 4 | |
34 | 33 | 3ad2ant3 1019 | . . 3 |
35 | eqfnfv 5981 | . . 3 | |
36 | 32, 34, 35 | syl2anc 661 | . 2 |
37 | 24, 27, 36 | 3bitr4d 285 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 /\ w3a 973
= wceq 1395 e. wcel 1818 =/= wne 2652
A. wral 2807 { crab 2811 cvv 3109
\ cdif 3472 u. cun 3473 i^i cin 3474
C_ wss 3475 c0 3784 { csn 4029 X. cxp 5002
`' ccnv 5003 |` cres 5006 " cima 5007
Fn wfn 5588 ` cfv 5593 |
This theorem is referenced by: fnsuppeq0OLD 6132 frlmsslss2OLD 18806 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-fv 5601 |
Copyright terms: Public domain | W3C validator |