![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fnwe | Unicode version |
Description: A variant on lexicographic order, which sorts first by some function of the base set, and then by a "backup" well-ordering when the function value is equal on both elements. (Contributed by Mario Carneiro, 10-Mar-2013.) (Revised by Mario Carneiro, 18-Nov-2014.) |
Ref | Expression |
---|---|
fnwe.1 | |
fnwe.2 | |
fnwe.3 | |
fnwe.4 | |
fnwe.5 |
Ref | Expression |
---|---|
fnwe |
S
,, ,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnwe.1 | . 2 | |
2 | fnwe.2 | . 2 | |
3 | fnwe.3 | . 2 | |
4 | fnwe.4 | . 2 | |
5 | fnwe.5 | . 2 | |
6 | eqid 2457 | . 2 | |
7 | eqid 2457 | . 2 | |
8 | 1, 2, 3, 4, 5, 6, 7 | fnwelem 6915 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 \/ wo 368
/\ wa 369 = wceq 1395 e. wcel 1818
cvv 3109
<. cop 4035 class class class wbr 4452
{ copab 4509 e. cmpt 4510
We wwe 4842 X. cxp 5002 " cima 5007
--> wf 5589 ` cfv 5593 c1st 6798
c2nd 6799 |
This theorem is referenced by: r0weon 8411 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-int 4287 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-1st 6800 df-2nd 6801 |
Copyright terms: Public domain | W3C validator |