![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fodmrnu | Unicode version |
Description: An onto function has unique domain and range. (Contributed by NM, 5-Nov-2006.) |
Ref | Expression |
---|---|
fodmrnu |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fofn 5802 | . . 3 | |
2 | fofn 5802 | . . 3 | |
3 | fndmu 5687 | . . 3 | |
4 | 1, 2, 3 | syl2an 477 | . 2 |
5 | forn 5803 | . . 3 | |
6 | forn 5803 | . . 3 | |
7 | 5, 6 | sylan9req 2519 | . 2 |
8 | 4, 7 | jca 532 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 ran crn 5005 Fn wfn 5588
-onto-> wfo 5591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-in 3482 df-ss 3489 df-fn 5596 df-f 5597 df-fo 5599 |
Copyright terms: Public domain | W3C validator |