![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fodomfi | Unicode version |
Description: An onto function implies dominance of domain over range, for finite sets. Unlike fodom 8923 for arbitrary sets, this theorem does not require the Axiom of Choice for its proof. (Contributed by NM, 23-Mar-2006.) (Proof shortened by Mario Carneiro, 16-Nov-2014.) |
Ref | Expression |
---|---|
fodomfi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | foima 5805 | . . 3 | |
2 | 1 | adantl 466 | . 2 |
3 | fofn 5802 | . . . 4 | |
4 | imaeq2 5338 | . . . . . . . 8 | |
5 | ima0 5357 | . . . . . . . 8 | |
6 | 4, 5 | syl6eq 2514 | . . . . . . 7 |
7 | id 22 | . . . . . . 7 | |
8 | 6, 7 | breq12d 4465 | . . . . . 6 |
9 | 8 | imbi2d 316 | . . . . 5 |
10 | imaeq2 5338 | . . . . . . 7 | |
11 | id 22 | . . . . . . 7 | |
12 | 10, 11 | breq12d 4465 | . . . . . 6 |
13 | 12 | imbi2d 316 | . . . . 5 |
14 | imaeq2 5338 | . . . . . . 7 | |
15 | id 22 | . . . . . . 7 | |
16 | 14, 15 | breq12d 4465 | . . . . . 6 |
17 | 16 | imbi2d 316 | . . . . 5 |
18 | imaeq2 5338 | . . . . . . 7 | |
19 | id 22 | . . . . . . 7 | |
20 | 18, 19 | breq12d 4465 | . . . . . 6 |
21 | 20 | imbi2d 316 | . . . . 5 |
22 | 0ex 4582 | . . . . . . 7 | |
23 | 22 | 0dom 7667 | . . . . . 6 |
24 | 23 | a1i 11 | . . . . 5 |
25 | fnfun 5683 | . . . . . . . . . . . . . . 15 | |
26 | 25 | ad2antrl 727 | . . . . . . . . . . . . . 14 |
27 | funressn 6084 | . . . . . . . . . . . . . 14 | |
28 | rnss 5236 | . . . . . . . . . . . . . 14 | |
29 | 26, 27, 28 | 3syl 20 | . . . . . . . . . . . . 13 |
30 | df-ima 5017 | . . . . . . . . . . . . 13 | |
31 | vex 3112 | . . . . . . . . . . . . . . 15 | |
32 | 31 | rnsnop 5494 | . . . . . . . . . . . . . 14 |
33 | 32 | eqcomi 2470 | . . . . . . . . . . . . 13 |
34 | 29, 30, 33 | 3sstr4g 3544 | . . . . . . . . . . . 12 |
35 | snex 4693 | . . . . . . . . . . . 12 | |
36 | ssexg 4598 | . . . . . . . . . . . 12 | |
37 | 34, 35, 36 | sylancl 662 | . . . . . . . . . . 11 |
38 | fvi 5930 | . . . . . . . . . . 11 | |
39 | 37, 38 | syl 16 | . . . . . . . . . 10 |
40 | 39 | uneq2d 3657 | . . . . . . . . 9 |
41 | imaundi 5423 | . . . . . . . . 9 | |
42 | 40, 41 | syl6eqr 2516 | . . . . . . . 8 |
43 | simprr 757 | . . . . . . . . 9 | |
44 | ssdomg 7581 | . . . . . . . . . . . 12 | |
45 | 35, 34, 44 | mpsyl 63 | . . . . . . . . . . 11 |
46 | fvex 5881 | . . . . . . . . . . . . 13 | |
47 | 46 | ensn1 7599 | . . . . . . . . . . . 12 |
48 | 31 | ensn1 7599 | . . . . . . . . . . . 12 |
49 | 47, 48 | entr4i 7592 | . . . . . . . . . . 11 |
50 | domentr 7594 | . . . . . . . . . . 11 | |
51 | 45, 49, 50 | sylancl 662 | . . . . . . . . . 10 |
52 | 39, 51 | eqbrtrd 4472 | . . . . . . . . 9 |
53 | simplr 755 | . . . . . . . . . 10 | |
54 | disjsn 4090 | . . . . . . . . . 10 | |
55 | 53, 54 | sylibr 212 | . . . . . . . . 9 |
56 | undom 7625 | . . . . . . . . 9 | |
57 | 43, 52, 55, 56 | syl21anc 1227 | . . . . . . . 8 |
58 | 42, 57 | eqbrtrrd 4474 | . . . . . . 7 |
59 | 58 | exp32 605 | . . . . . 6 |
60 | 59 | a2d 26 | . . . . 5 |
61 | 9, 13, 17, 21, 24, 60 | findcard2s 7781 | . . . 4 |
62 | 3, 61 | syl5 32 | . . 3 |
63 | 62 | imp 429 | . 2 |
64 | 2, 63 | eqbrtrrd 4474 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 = wceq 1395 e. wcel 1818
cvv 3109
u. cun 3473 i^i cin 3474 C_ wss 3475
c0 3784 { csn 4029 <. cop 4035
class class class wbr 4452 cid 4795
ran crn 5005 |` cres 5006 " cima 5007
Fun wfun 5587
Fn wfn 5588 -onto-> wfo 5591 ` cfv 5593
c1o 7142
cen 7533 cdom 7534 cfn 7536 |
This theorem is referenced by: fodomfib 7820 fofinf1o 7821 fidomdm 7822 fofi 7826 pwfilem 7834 cmpsub 19900 alexsubALT 20551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-om 6701 df-1o 7149 df-er 7330 df-en 7537 df-dom 7538 df-fin 7540 |
Copyright terms: Public domain | W3C validator |