![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > foimacnv | Unicode version |
Description: A reverse version of f1imacnv 5837. (Contributed by Jeff Hankins, 16-Jul-2009.) |
Ref | Expression |
---|---|
foimacnv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resima 5311 | . 2 | |
2 | fofun 5801 | . . . . . 6 | |
3 | 2 | adantr 465 | . . . . 5 |
4 | funcnvres2 5664 | . . . . 5 | |
5 | 3, 4 | syl 16 | . . . 4 |
6 | 5 | imaeq1d 5341 | . . 3 |
7 | resss 5302 | . . . . . . . . . . 11 | |
8 | cnvss 5180 | . . . . . . . . . . 11 | |
9 | 7, 8 | ax-mp 5 | . . . . . . . . . 10 |
10 | cnvcnvss 5466 | . . . . . . . . . 10 | |
11 | 9, 10 | sstri 3512 | . . . . . . . . 9 |
12 | funss 5611 | . . . . . . . . 9 | |
13 | 11, 2, 12 | mpsyl 63 | . . . . . . . 8 |
14 | 13 | adantr 465 | . . . . . . 7 |
15 | df-ima 5017 | . . . . . . . 8 | |
16 | df-rn 5015 | . . . . . . . 8 | |
17 | 15, 16 | eqtr2i 2487 | . . . . . . 7 |
18 | 14, 17 | jctir 538 | . . . . . 6 |
19 | df-fn 5596 | . . . . . 6 | |
20 | 18, 19 | sylibr 212 | . . . . 5 |
21 | dfdm4 5200 | . . . . . 6 | |
22 | forn 5803 | . . . . . . . . . 10 | |
23 | 22 | sseq2d 3531 | . . . . . . . . 9 |
24 | 23 | biimpar 485 | . . . . . . . 8 |
25 | df-rn 5015 | . . . . . . . 8 | |
26 | 24, 25 | syl6sseq 3549 | . . . . . . 7 |
27 | ssdmres 5300 | . . . . . . 7 | |
28 | 26, 27 | sylib 196 | . . . . . 6 |
29 | 21, 28 | syl5eqr 2512 | . . . . 5 |
30 | df-fo 5599 | . . . . 5 | |
31 | 20, 29, 30 | sylanbrc 664 | . . . 4 |
32 | foima 5805 | . . . 4 | |
33 | 31, 32 | syl 16 | . . 3 |
34 | 6, 33 | eqtr3d 2500 | . 2 |
35 | 1, 34 | syl5eqr 2512 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 C_ wss 3475 `' ccnv 5003
dom cdm 5004 ran crn 5005 |` cres 5006
" cima 5007 Fun wfun 5587 Fn wfn 5588
-onto-> wfo 5591 |
This theorem is referenced by: f1opw2 6528 imacosupp 6959 fopwdom 7645 f1opwfi 7844 enfin2i 8722 fin1a2lem7 8807 fsumss 13547 fprodss 13755 gicsubgen 16326 gsumval3OLD 16908 coe1mul2lem2 18309 cncmp 19892 cnconn 19923 qtoprest 20218 qtopomap 20219 qtopcmap 20220 hmeoimaf1o 20271 elfm3 20451 imasf1oxms 20992 mbfimaopnlem 22062 cvmsss2 28719 lnmepi 31031 pwfi2f1o 31044 diaintclN 36785 dibintclN 36894 dihintcl 37071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 df-opab 4511 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-fun 5595 df-fn 5596 df-f 5597 df-fo 5599 |
Copyright terms: Public domain | W3C validator |