![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fopwdom | Unicode version |
Description: Covering implies injection on power sets. (Contributed by Stefan O'Rear, 6-Nov-2014.) (Revised by Mario Carneiro, 24-Jun-2015.) |
Ref | Expression |
---|---|
fopwdom |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imassrn 5353 | . . . . . 6 | |
2 | dfdm4 5200 | . . . . . . 7 | |
3 | fof 5800 | . . . . . . . 8 | |
4 | fdm 5740 | . . . . . . . 8 | |
5 | 3, 4 | syl 16 | . . . . . . 7 |
6 | 2, 5 | syl5eqr 2512 | . . . . . 6 |
7 | 1, 6 | syl5sseq 3551 | . . . . 5 |
8 | 7 | adantl 466 | . . . 4 |
9 | cnvexg 6746 | . . . . . 6 | |
10 | 9 | adantr 465 | . . . . 5 |
11 | imaexg 6737 | . . . . 5 | |
12 | elpwg 4020 | . . . . 5 | |
13 | 10, 11, 12 | 3syl 20 | . . . 4 |
14 | 8, 13 | mpbird 232 | . . 3 |
15 | 14 | a1d 25 | . 2 |
16 | imaeq2 5338 | . . . . . . 7 | |
17 | 16 | adantl 466 | . . . . . 6 |
18 | simpllr 760 | . . . . . . 7 | |
19 | simplrl 761 | . . . . . . . 8 | |
20 | 19 | elpwid 4022 | . . . . . . 7 |
21 | foimacnv 5838 | . . . . . . 7 | |
22 | 18, 20, 21 | syl2anc 661 | . . . . . 6 |
23 | simplrr 762 | . . . . . . . 8 | |
24 | 23 | elpwid 4022 | . . . . . . 7 |
25 | foimacnv 5838 | . . . . . . 7 | |
26 | 18, 24, 25 | syl2anc 661 | . . . . . 6 |
27 | 17, 22, 26 | 3eqtr3d 2506 | . . . . 5 |
28 | 27 | ex 434 | . . . 4 |
29 | imaeq2 5338 | . . . 4 | |
30 | 28, 29 | impbid1 203 | . . 3 |
31 | 30 | ex 434 | . 2 |
32 | rnexg 6732 | . . . . 5 | |
33 | forn 5803 | . . . . . 6 | |
34 | 33 | eleq1d 2526 | . . . . 5 |
35 | 32, 34 | syl5ibcom 220 | . . . 4 |
36 | 35 | imp 429 | . . 3 |
37 | pwexg 4636 | . . 3 | |
38 | 36, 37 | syl 16 | . 2 |
39 | dmfex 6758 | . . . 4 | |
40 | 3, 39 | sylan2 474 | . . 3 |
41 | pwexg 4636 | . . 3 | |
42 | 40, 41 | syl 16 | . 2 |
43 | 15, 31, 38, 42 | dom3d 7577 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
cvv 3109
C_ wss 3475 ~P cpw 4012 class class class wbr 4452
`' ccnv 5003 dom cdm 5004 ran crn 5005
" cima 5007 --> wf 5589 -onto-> wfo 5591 cdom 7534 |
This theorem is referenced by: pwdom 7689 wdompwdom 8025 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-fv 5601 df-dom 7538 |
Copyright terms: Public domain | W3C validator |