![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fpar | Unicode version |
Description: Merge two functions in parallel. Use as the second argument of a composition with a (2-place) operation to build compound operations such as . (Contributed by NM, 17-Sep-2007.) (Proof shortened by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
fpar.1 |
Ref | Expression |
---|---|
fpar |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fparlem3 6902 | . . 3 | |
2 | fparlem4 6903 | . . 3 | |
3 | 1, 2 | ineqan12d 3701 | . 2 |
4 | fpar.1 | . 2 | |
5 | opex 4716 | . . . 4 | |
6 | 5 | dfmpt2 6890 | . . 3 |
7 | inxp 5140 | . . . . . . . 8 | |
8 | inxp 5140 | . . . . . . . . . 10 | |
9 | inv1 3812 | . . . . . . . . . . 11 | |
10 | incom 3690 | . . . . . . . . . . . 12 | |
11 | inv1 3812 | . . . . . . . . . . . 12 | |
12 | 10, 11 | eqtri 2486 | . . . . . . . . . . 11 |
13 | 9, 12 | xpeq12i 5026 | . . . . . . . . . 10 |
14 | vex 3112 | . . . . . . . . . . 11 | |
15 | vex 3112 | . . . . . . . . . . 11 | |
16 | 14, 15 | xpsn 6073 | . . . . . . . . . 10 |
17 | 8, 13, 16 | 3eqtri 2490 | . . . . . . . . 9 |
18 | inxp 5140 | . . . . . . . . . 10 | |
19 | inv1 3812 | . . . . . . . . . . 11 | |
20 | incom 3690 | . . . . . . . . . . . 12 | |
21 | inv1 3812 | . . . . . . . . . . . 12 | |
22 | 20, 21 | eqtri 2486 | . . . . . . . . . . 11 |
23 | 19, 22 | xpeq12i 5026 | . . . . . . . . . 10 |
24 | fvex 5881 | . . . . . . . . . . 11 | |
25 | fvex 5881 | . . . . . . . . . . 11 | |
26 | 24, 25 | xpsn 6073 | . . . . . . . . . 10 |
27 | 18, 23, 26 | 3eqtri 2490 | . . . . . . . . 9 |
28 | 17, 27 | xpeq12i 5026 | . . . . . . . 8 |
29 | opex 4716 | . . . . . . . . 9 | |
30 | 29, 5 | xpsn 6073 | . . . . . . . 8 |
31 | 7, 28, 30 | 3eqtri 2490 | . . . . . . 7 |
32 | 31 | a1i 11 | . . . . . 6 |
33 | 32 | iuneq2i 4349 | . . . . 5 |
34 | 33 | a1i 11 | . . . 4 |
35 | 34 | iuneq2i 4349 | . . 3 |
36 | 2iunin 4398 | . . 3 | |
37 | 6, 35, 36 | 3eqtr2i 2492 | . 2 |
38 | 3, 4, 37 | 3eqtr4g 2523 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 e. wcel 1818 cvv 3109
i^i cin 3474 { csn 4029 <. cop 4035
U_ ciun 4330 X. cxp 5002 `' ccnv 5003
|` cres 5006 o. ccom 5008 Fn wfn 5588
` cfv 5593 e. cmpt2 6298 c1st 6798
c2nd 6799 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-fal 1401 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-oprab 6300 df-mpt2 6301 df-1st 6800 df-2nd 6801 |
Copyright terms: Public domain | W3C validator |