![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fparlem3 | Unicode version |
Description: Lemma for fpar 6904. (Contributed by NM, 22-Dec-2008.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
fparlem3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coiun 5522 | . 2 | |
2 | inss1 3717 | . . . . 5 | |
3 | fndm 5685 | . . . . 5 | |
4 | 2, 3 | syl5sseq 3551 | . . . 4 |
5 | dfco2a 5512 | . . . 4 | |
6 | 4, 5 | syl 16 | . . 3 |
7 | 6 | coeq2d 5170 | . 2 |
8 | inss1 3717 | . . . . . . . . 9 | |
9 | dmxpss 5443 | . . . . . . . . 9 | |
10 | 8, 9 | sstri 3512 | . . . . . . . 8 |
11 | dfco2a 5512 | . . . . . . . 8 | |
12 | 10, 11 | ax-mp 5 | . . . . . . 7 |
13 | fvex 5881 | . . . . . . . 8 | |
14 | fparlem1 6900 | . . . . . . . . . 10 | |
15 | sneq 4039 | . . . . . . . . . . 11 | |
16 | 15 | xpeq1d 5027 | . . . . . . . . . 10 |
17 | 14, 16 | syl5eq 2510 | . . . . . . . . 9 |
18 | 15 | imaeq2d 5342 | . . . . . . . . . 10 |
19 | df-ima 5017 | . . . . . . . . . . 11 | |
20 | ssid 3522 | . . . . . . . . . . . . . 14 | |
21 | xpssres 5313 | . . . . . . . . . . . . . 14 | |
22 | 20, 21 | ax-mp 5 | . . . . . . . . . . . . 13 |
23 | 22 | rneqi 5234 | . . . . . . . . . . . 12 |
24 | 13 | snnz 4148 | . . . . . . . . . . . . 13 |
25 | rnxp 5442 | . . . . . . . . . . . . 13 | |
26 | 24, 25 | ax-mp 5 | . . . . . . . . . . . 12 |
27 | 23, 26 | eqtri 2486 | . . . . . . . . . . 11 |
28 | 19, 27 | eqtri 2486 | . . . . . . . . . 10 |
29 | 18, 28 | syl6eq 2514 | . . . . . . . . 9 |
30 | 17, 29 | xpeq12d 5029 | . . . . . . . 8 |
31 | 13, 30 | iunxsn 4410 | . . . . . . 7 |
32 | 12, 31 | eqtri 2486 | . . . . . 6 |
33 | 32 | cnveqi 5182 | . . . . 5 |
34 | cnvco 5193 | . . . . 5 | |
35 | cnvxp 5429 | . . . . 5 | |
36 | 33, 34, 35 | 3eqtr3i 2494 | . . . 4 |
37 | fparlem1 6900 | . . . . . . . . 9 | |
38 | 37 | xpeq2i 5025 | . . . . . . . 8 |
39 | fnsnfv 5933 | . . . . . . . . 9 | |
40 | 39 | xpeq1d 5027 | . . . . . . . 8 |
41 | 38, 40 | syl5eqr 2512 | . . . . . . 7 |
42 | 41 | cnveqd 5183 | . . . . . 6 |
43 | cnvxp 5429 | . . . . . 6 | |
44 | 42, 43 | syl6eq 2514 | . . . . 5 |
45 | 44 | coeq2d 5170 | . . . 4 |
46 | 36, 45 | syl5eqr 2512 | . . 3 |
47 | 46 | iuneq2dv 4352 | . 2 |
48 | 1, 7, 47 | 3eqtr4a 2524 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 e. wcel 1818 =/= wne 2652
cvv 3109
i^i cin 3474 C_ wss 3475 c0 3784 { csn 4029 U_ ciun 4330
X. cxp 5002 `' ccnv 5003 dom cdm 5004
ran crn 5005 |` cres 5006 " cima 5007
o. ccom 5008 Fn wfn 5588 ` cfv 5593
c1st 6798 |
This theorem is referenced by: fpar 6904 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-fv 5601 df-1st 6800 df-2nd 6801 |
Copyright terms: Public domain | W3C validator |