![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fprodcvg | Unicode version |
Description: The sequence of partial products of a finite product converges to the whole product. (Contributed by Scott Fenton, 4-Dec-2017.) |
Ref | Expression |
---|---|
prodmo.1 | |
prodmo.2 | |
prodrb.3 | |
fprodcvg.4 |
Ref | Expression |
---|---|
fprodcvg |
M
,N
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2457 | . 2 | |
2 | prodrb.3 | . . 3 | |
3 | eluzelz 11119 | . . 3 | |
4 | 2, 3 | syl 16 | . 2 |
5 | seqex 12109 | . . 3 | |
6 | 5 | a1i 11 | . 2 |
7 | eqid 2457 | . . . 4 | |
8 | eluzel2 11115 | . . . . 5 | |
9 | 2, 8 | syl 16 | . . . 4 |
10 | eluzelz 11119 | . . . . . . 7 | |
11 | 10 | adantl 466 | . . . . . 6 |
12 | iftrue 3947 | . . . . . . . . . 10 | |
13 | 12 | adantl 466 | . . . . . . . . 9 |
14 | prodmo.2 | . . . . . . . . . 10 | |
15 | 14 | adantlr 714 | . . . . . . . . 9 |
16 | 13, 15 | eqeltrd 2545 | . . . . . . . 8 |
17 | 16 | ex 434 | . . . . . . 7 |
18 | iffalse 3950 | . . . . . . . 8 | |
19 | ax-1cn 9571 | . . . . . . . 8 | |
20 | 18, 19 | syl6eqel 2553 | . . . . . . 7 |
21 | 17, 20 | pm2.61d1 159 | . . . . . 6 |
22 | prodmo.1 | . . . . . . 7 | |
23 | 22 | fvmpt2 5963 | . . . . . 6 |
24 | 11, 21, 23 | syl2anc 661 | . . . . 5 |
25 | 24, 21 | eqeltrd 2545 | . . . 4 |
26 | 7, 9, 25 | prodf 13696 | . . 3 |
27 | 26, 2 | ffvelrnd 6032 | . 2 |
28 | mulid1 9614 | . . . . 5 | |
29 | 28 | adantl 466 | . . . 4 |
30 | 2 | adantr 465 | . . . 4 |
31 | simpr 461 | . . . 4 | |
32 | 9 | adantr 465 | . . . . . 6 |
33 | 25 | adantlr 714 | . . . . . 6 |
34 | 7, 32, 33 | prodf 13696 | . . . . 5 |
35 | 34, 30 | ffvelrnd 6032 | . . . 4 |
36 | elfzuz 11713 | . . . . . 6 | |
37 | eluzelz 11119 | . . . . . . . . 9 | |
38 | 37 | adantl 466 | . . . . . . . 8 |
39 | fprodcvg.4 | . . . . . . . . . . . 12 | |
40 | 39 | sseld 3502 | . . . . . . . . . . 11 |
41 | fznuz 11789 | . . . . . . . . . . 11 | |
42 | 40, 41 | syl6 33 | . . . . . . . . . 10 |
43 | 42 | con2d 115 | . . . . . . . . 9 |
44 | 43 | imp 429 | . . . . . . . 8 |
45 | 38, 44 | eldifd 3486 | . . . . . . 7 |
46 | fveq2 5871 | . . . . . . . . 9 | |
47 | 46 | eqeq1d 2459 | . . . . . . . 8 |
48 | eldifi 3625 | . . . . . . . . . 10 | |
49 | eldifn 3626 | . . . . . . . . . . . 12 | |
50 | 49, 18 | syl 16 | . . . . . . . . . . 11 |
51 | 50, 19 | syl6eqel 2553 | . . . . . . . . . 10 |
52 | 48, 51, 23 | syl2anc 661 | . . . . . . . . 9 |
53 | 52, 50 | eqtrd 2498 | . . . . . . . 8 |
54 | 47, 53 | vtoclga 3173 | . . . . . . 7 |
55 | 45, 54 | syl 16 | . . . . . 6 |
56 | 36, 55 | sylan2 474 | . . . . 5 |
57 | 56 | adantlr 714 | . . . 4 |
58 | 29, 30, 31, 35, 57 | seqid2 12153 | . . 3 |
59 | 58 | eqcomd 2465 | . 2 |
60 | 1, 4, 6, 27, 59 | climconst 13366 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 = wceq 1395 e. wcel 1818
cvv 3109
\ cdif 3472 C_ wss 3475 if cif 3941
class class class wbr 4452 e. cmpt 4510
` cfv 5593 (class class class)co 6296
cc 9511 1 c1 9514 caddc 9516 cmul 9518 cz 10889 cuz 11110
cfz 11701 seq cseq 12107 cli 13307 |
This theorem is referenced by: prodmolem2a 13741 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-inf2 8079 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-2 10619 df-n0 10821 df-z 10890 df-uz 11111 df-rp 11250 df-fz 11702 df-seq 12108 df-exp 12167 df-cj 12932 df-re 12933 df-im 12934 df-sqrt 13068 df-abs 13069 df-clim 13311 |
Copyright terms: Public domain | W3C validator |