![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fprodntriv | Unicode version |
Description: A non-triviality lemma for finite sequences. (Contributed by Scott Fenton, 16-Dec-2017.) |
Ref | Expression |
---|---|
fprodntriv.1 | |
fprodntriv.2 | |
fprodntriv.3 |
Ref | Expression |
---|---|
fprodntriv |
N
, ,,N
,,,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fprodntriv.2 | . . . . 5 | |
2 | fprodntriv.1 | . . . . 5 | |
3 | 1, 2 | syl6eleq 2555 | . . . 4 |
4 | peano2uz 11163 | . . . 4 | |
5 | 3, 4 | syl 16 | . . 3 |
6 | 5, 2 | syl6eleqr 2556 | . 2 |
7 | ax-1ne0 9582 | . . 3 | |
8 | eqid 2457 | . . . 4 | |
9 | eluzelz 11119 | . . . . . . 7 | |
10 | 9, 2 | eleq2s 2565 | . . . . . 6 |
11 | 1, 10 | syl 16 | . . . . 5 |
12 | 11 | peano2zd 10997 | . . . 4 |
13 | seqex 12109 | . . . . 5 | |
14 | 13 | a1i 11 | . . . 4 |
15 | 1cnd 9633 | . . . 4 | |
16 | simpr 461 | . . . . . 6 | |
17 | fprodntriv.3 | . . . . . . . . . 10 | |
18 | 17 | ad2antrr 725 | . . . . . . . . 9 |
19 | 11 | ad2antrr 725 | . . . . . . . . . . . . . . 15 |
20 | 19 | zred 10994 | . . . . . . . . . . . . . 14 |
21 | 19 | peano2zd 10997 | . . . . . . . . . . . . . . 15 |
22 | 21 | zred 10994 | . . . . . . . . . . . . . 14 |
23 | elfzelz 11717 | . . . . . . . . . . . . . . . 16 | |
24 | 23 | adantl 466 | . . . . . . . . . . . . . . 15 |
25 | 24 | zred 10994 | . . . . . . . . . . . . . 14 |
26 | 20 | ltp1d 10501 | . . . . . . . . . . . . . 14 |
27 | elfzle1 11718 | . . . . . . . . . . . . . . 15 | |
28 | 27 | adantl 466 | . . . . . . . . . . . . . 14 |
29 | 20, 22, 25, 26, 28 | ltletrd 9763 | . . . . . . . . . . . . 13 |
30 | 20, 25 | ltnled 9753 | . . . . . . . . . . . . 13 |
31 | 29, 30 | mpbid 210 | . . . . . . . . . . . 12 |
32 | 31 | intnand 916 | . . . . . . . . . . 11 |
33 | 32 | intnand 916 | . . . . . . . . . 10 |
34 | elfz2 11708 | . . . . . . . . . 10 | |
35 | 33, 34 | sylnibr 305 | . . . . . . . . 9 |
36 | 18, 35 | ssneldd 3506 | . . . . . . . 8 |
37 | 36 | iffalsed 3952 | . . . . . . 7 |
38 | fzssuz 11753 | . . . . . . . . . 10 | |
39 | 5 | adantr 465 | . . . . . . . . . . . 12 |
40 | uzss 11130 | . . . . . . . . . . . 12 | |
41 | 39, 40 | syl 16 | . . . . . . . . . . 11 |
42 | 41, 2 | syl6sseqr 3550 | . . . . . . . . . 10 |
43 | 38, 42 | syl5ss 3514 | . . . . . . . . 9 |
44 | 43 | sselda 3503 | . . . . . . . 8 |
45 | ax-1cn 9571 | . . . . . . . . 9 | |
46 | 37, 45 | syl6eqel 2553 | . . . . . . . 8 |
47 | nfcv 2619 | . . . . . . . . 9 | |
48 | nfv 1707 | . . . . . . . . . 10 | |
49 | nfcsb1v 3450 | . . . . . . . . . 10 | |
50 | nfcv 2619 | . . . . . . . . . 10 | |
51 | 48, 49, 50 | nfif 3970 | . . . . . . . . 9 |
52 | eleq1 2529 | . . . . . . . . . 10 | |
53 | csbeq1a 3443 | . . . . . . . . . 10 | |
54 | 52, 53 | ifbieq1d 3964 | . . . . . . . . 9 |
55 | eqid 2457 | . . . . . . . . 9 | |
56 | 47, 51, 54, 55 | fvmptf 5972 | . . . . . . . 8 |
57 | 44, 46, 56 | syl2anc 661 | . . . . . . 7 |
58 | elfzuz 11713 | . . . . . . . . 9 | |
59 | 58 | adantl 466 | . . . . . . . 8 |
60 | 1ex 9612 | . . . . . . . . 9 | |
61 | 60 | fvconst2 6126 | . . . . . . . 8 |
62 | 59, 61 | syl 16 | . . . . . . 7 |
63 | 37, 57, 62 | 3eqtr4d 2508 | . . . . . 6 |
64 | 16, 63 | seqfveq 12131 | . . . . 5 |
65 | 8 | prodf1 13700 | . . . . . 6 |
66 | 65 | adantl 466 | . . . . 5 |
67 | 64, 66 | eqtrd 2498 | . . . 4 |
68 | 8, 12, 14, 15, 67 | climconst 13366 | . . 3 |
69 | neeq1 2738 | . . . . 5 | |
70 | breq2 4456 | . . . . 5 | |
71 | 69, 70 | anbi12d 710 | . . . 4 |
72 | 60, 71 | spcev 3201 | . . 3 |
73 | 7, 68, 72 | sylancr 663 | . 2 |
74 | seqeq1 12110 | . . . . . 6 | |
75 | 74 | breq1d 4462 | . . . . 5 |
76 | 75 | anbi2d 703 | . . . 4 |
77 | 76 | exbidv 1714 | . . 3 |
78 | 77 | rspcev 3210 | . 2 |
79 | 6, 73, 78 | syl2anc 661 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 /\ w3a 973 = wceq 1395
E. wex 1612 e. wcel 1818 =/= wne 2652
E. wrex 2808 cvv 3109
[_ csb 3434 C_ wss 3475 if cif 3941
{ csn 4029 class class class wbr 4452
e. cmpt 4510 X. cxp 5002 ` cfv 5593
(class class class)co 6296 cc 9511 0 cc0 9513 1 c1 9514
caddc 9516 cmul 9518 clt 9649 cle 9650 cz 10889 cuz 11110
cfz 11701 seq cseq 12107 cli 13307 |
This theorem is referenced by: fprodss 13755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-inf2 8079 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-2 10619 df-n0 10821 df-z 10890 df-uz 11111 df-rp 11250 df-fz 11702 df-seq 12108 df-exp 12167 df-cj 12932 df-re 12933 df-im 12934 df-sqrt 13068 df-abs 13069 df-clim 13311 |
Copyright terms: Public domain | W3C validator |