MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodsplit Unicode version

Theorem fprodsplit 13770
Description: Split a finite product into two parts. (Contributed by Scott Fenton, 16-Dec-2017.)
Hypotheses
Ref Expression
fprodsplit.1
fprodsplit.2
fprodsplit.3
fprodsplit.4
Assertion
Ref Expression
fprodsplit
Distinct variable groups:   ,   ,   ,   ,

Proof of Theorem fprodsplit
StepHypRef Expression
1 iftrue 3947 . . . . 5
21prodeq2i 13726 . . . 4
3 ssun1 3666 . . . . . 6
4 fprodsplit.2 . . . . . 6
53, 4syl5sseqr 3552 . . . . 5
61adantl 466 . . . . . 6
75sselda 3503 . . . . . . 7
8 fprodsplit.4 . . . . . . 7
97, 8syldan 470 . . . . . 6
106, 9eqeltrd 2545 . . . . 5
11 eldifn 3626 . . . . . . 7
1211iffalsed 3952 . . . . . 6
1312adantl 466 . . . . 5
14 fprodsplit.3 . . . . 5
155, 10, 13, 14fprodss 13755 . . . 4
162, 15syl5eqr 2512 . . 3
17 iftrue 3947 . . . . 5
1817prodeq2i 13726 . . . 4
19 ssun2 3667 . . . . . 6
2019, 4syl5sseqr 3552 . . . . 5
2117adantl 466 . . . . . 6
2220sselda 3503 . . . . . . 7
2322, 8syldan 470 . . . . . 6
2421, 23eqeltrd 2545 . . . . 5
25 eldifn 3626 . . . . . . 7
2625iffalsed 3952 . . . . . 6
2726adantl 466 . . . . 5
2820, 24, 27, 14fprodss 13755 . . . 4
2918, 28syl5eqr 2512 . . 3
3016, 29oveq12d 6314 . 2
31 ax-1cn 9571 . . . 4
32 ifcl 3983 . . . 4
338, 31, 32sylancl 662 . . 3
34 ifcl 3983 . . . 4
358, 31, 34sylancl 662 . . 3
3614, 33, 35fprodmul 13765 . 2
374eleq2d 2527 . . . . . 6
38 elun 3644 . . . . . 6
3937, 38syl6bb 261 . . . . 5
4039biimpa 484 . . . 4
41 fprodsplit.1 . . . . . . . . 9
42 disjel 3873 . . . . . . . . 9
4341, 42sylan 471 . . . . . . . 8
4443iffalsed 3952 . . . . . . 7
456, 44oveq12d 6314 . . . . . 6
469mulid1d 9634 . . . . . 6
4745, 46eqtrd 2498 . . . . 5
4843ex 434 . . . . . . . . . 10
4948con2d 115 . . . . . . . . 9
5049imp 429 . . . . . . . 8
5150iffalsed 3952 . . . . . . 7
5251, 21oveq12d 6314 . . . . . 6
5323mulid2d 9635 . . . . . 6
5452, 53eqtrd 2498 . . . . 5
5547, 54jaodan 785 . . . 4
5640, 55syldan 470 . . 3
5756prodeq2dv 13730 . 2
5830, 36, 573eqtr2rd 2505 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  \/wo 368  /\wa 369  =wceq 1395  e.wcel 1818  \cdif 3472  u.cun 3473  i^icin 3474   c0 3784  ifcif 3941  (class class class)co 6296   cfn 7536   cc 9511  1c1 9514   cmul 9518  prod_cprod 13712
This theorem is referenced by:  fprodm1  13771  fprod1p  13772  fprodeq0  13779  fprod2dlem  13784  fallfacval4  29165  fprodsplitf  31589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-8 1820  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-rep 4563  ax-sep 4573  ax-nul 4581  ax-pow 4630  ax-pr 4691  ax-un 6592  ax-inf2 8079  ax-cnex 9569  ax-resscn 9570  ax-1cn 9571  ax-icn 9572  ax-addcl 9573  ax-addrcl 9574  ax-mulcl 9575  ax-mulrcl 9576  ax-mulcom 9577  ax-addass 9578  ax-mulass 9579  ax-distr 9580  ax-i2m1 9581  ax-1ne0 9582  ax-1rid 9583  ax-rnegex 9584  ax-rrecex 9585  ax-cnre 9586  ax-pre-lttri 9587  ax-pre-lttrn 9588  ax-pre-ltadd 9589  ax-pre-mulgt0 9590  ax-pre-sup 9591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-fal 1401  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3435  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-pss 3491  df-nul 3785  df-if 3942  df-pw 4014  df-sn 4030  df-pr 4032  df-tp 4034  df-op 4036  df-uni 4250  df-int 4287  df-iun 4332  df-br 4453  df-opab 4511  df-mpt 4512  df-tr 4546  df-eprel 4796  df-id 4800  df-po 4805  df-so 4806  df-fr 4843  df-se 4844  df-we 4845  df-ord 4886  df-on 4887  df-lim 4888  df-suc 4889  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017  df-iota 5556  df-fun 5595  df-fn 5596  df-f 5597  df-f1 5598  df-fo 5599  df-f1o 5600  df-fv 5601  df-isom 5602  df-riota 6257  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6701  df-1st 6800  df-2nd 6801  df-recs 7061  df-rdg 7095  df-1o 7149  df-oadd 7153  df-er 7330  df-en 7537  df-dom 7538  df-sdom 7539  df-fin 7540  df-sup 7921  df-oi 7956  df-card 8341  df-pnf 9651  df-mnf 9652  df-xr 9653  df-ltxr 9654  df-le 9655  df-sub 9830  df-neg 9831  df-div 10232  df-nn 10562  df-2 10619  df-3 10620  df-n0 10821  df-z 10890  df-uz 11111  df-rp 11250  df-fz 11702  df-fzo 11825  df-seq 12108  df-exp 12167  df-hash 12406  df-cj 12932  df-re 12933  df-im 12934  df-sqrt 13068  df-abs 13069  df-clim 13311  df-prod 13713
  Copyright terms: Public domain W3C validator