![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fpwwe2cbv | Unicode version |
Description: Lemma for fpwwe2 9042. (Contributed by Mario Carneiro, 3-Jun-2015.) |
Ref | Expression |
---|---|
fpwwe2.1 |
Ref | Expression |
---|---|
fpwwe2cbv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fpwwe2.1 | . 2 | |
2 | simpl 457 | . . . . . 6 | |
3 | 2 | sseq1d 3530 | . . . . 5 |
4 | simpr 461 | . . . . . 6 | |
5 | 2 | sqxpeqd 5030 | . . . . . 6 |
6 | 4, 5 | sseq12d 3532 | . . . . 5 |
7 | 3, 6 | anbi12d 710 | . . . 4 |
8 | weeq2 4873 | . . . . . 6 | |
9 | weeq1 4872 | . . . . . 6 | |
10 | 8, 9 | sylan9bb 699 | . . . . 5 |
11 | id 22 | . . . . . . . . . . 11 | |
12 | 11 | sqxpeqd 5030 | . . . . . . . . . . . 12 |
13 | 12 | ineq2d 3699 | . . . . . . . . . . 11 |
14 | 11, 13 | oveq12d 6314 | . . . . . . . . . 10 |
15 | 14 | eqeq1d 2459 | . . . . . . . . 9 |
16 | 15 | cbvsbcv 3357 | . . . . . . . 8 |
17 | sneq 4039 | . . . . . . . . . 10 | |
18 | 17 | imaeq2d 5342 | . . . . . . . . 9 |
19 | eqeq2 2472 | . . . . . . . . 9 | |
20 | 18, 19 | sbceqbid 3334 | . . . . . . . 8 |
21 | 16, 20 | syl5bb 257 | . . . . . . 7 |
22 | 21 | cbvralv 3084 | . . . . . 6 |
23 | 4 | cnveqd 5183 | . . . . . . . . 9 |
24 | 23 | imaeq1d 5341 | . . . . . . . 8 |
25 | 4 | ineq1d 3698 | . . . . . . . . . 10 |
26 | 25 | oveq2d 6312 | . . . . . . . . 9 |
27 | 26 | eqeq1d 2459 | . . . . . . . 8 |
28 | 24, 27 | sbceqbid 3334 | . . . . . . 7 |
29 | 2, 28 | raleqbidv 3068 | . . . . . 6 |
30 | 22, 29 | syl5bb 257 | . . . . 5 |
31 | 10, 30 | anbi12d 710 | . . . 4 |
32 | 7, 31 | anbi12d 710 | . . 3 |
33 | 32 | cbvopabv 4521 | . 2 |
34 | 1, 33 | eqtri 2486 | 1 |
Colors of variables: wff setvar class |
Syntax hints: /\ wa 369 = wceq 1395
A. wral 2807 [. wsbc 3327 i^i cin 3474
C_ wss 3475 { csn 4029 { copab 4509 We wwe 4842
X. cxp 5002 `' ccnv 5003 " cima 5007
(class class class)co 6296 |
This theorem is referenced by: fpwwe2lem12 9040 fpwwe2lem13 9041 canthwe 9050 pwfseqlem5 9062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-xp 5010 df-cnv 5012 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fv 5601 df-ov 6299 |
Copyright terms: Public domain | W3C validator |