![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fpwwe2lem1 | Unicode version |
Description: Lemma for fpwwe2 9042. (Contributed by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
fpwwe2.1 |
Ref | Expression |
---|---|
fpwwe2lem1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 753 | . . . . 5 | |
2 | selpw 4019 | . . . . 5 | |
3 | 1, 2 | sylibr 212 | . . . 4 |
4 | simplr 755 | . . . . . 6 | |
5 | xpss12 5113 | . . . . . . 7 | |
6 | 1, 1, 5 | syl2anc 661 | . . . . . 6 |
7 | 4, 6 | sstrd 3513 | . . . . 5 |
8 | selpw 4019 | . . . . 5 | |
9 | 7, 8 | sylibr 212 | . . . 4 |
10 | 3, 9 | jca 532 | . . 3 |
11 | 10 | ssopab2i 4780 | . 2 |
12 | fpwwe2.1 | . 2 | |
13 | df-xp 5010 | . 2 | |
14 | 11, 12, 13 | 3sstr4i 3542 | 1 |
Colors of variables: wff setvar class |
Syntax hints: /\ wa 369 = wceq 1395
e. wcel 1818 A. wral 2807 [. wsbc 3327
i^i cin 3474 C_ wss 3475 ~P cpw 4012
{ csn 4029 { copab 4509 We wwe 4842
X. cxp 5002 `' ccnv 5003 " cima 5007
(class class class)co 6296 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-in 3482 df-ss 3489 df-pw 4014 df-opab 4511 df-xp 5010 |
Copyright terms: Public domain | W3C validator |