![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fpwwe2lem10 | Unicode version |
Description: Lemma for fpwwe2 9042. Given two well-orders and of parts of , one is an initial segment of the other. (Contributed by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
fpwwe2.1 | |
fpwwe2.2 | |
fpwwe2.3 | |
fpwwe2lem10.4 | |
fpwwe2lem10.6 |
Ref | Expression |
---|---|
fpwwe2lem10 |
S
,,,, ,,,,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2457 | . . . 4 | |
2 | 1 | oicl 7975 | . . 3 |
3 | eqid 2457 | . . . 4 | |
4 | 3 | oicl 7975 | . . 3 |
5 | ordtri2or2 4979 | . . 3 | |
6 | 2, 4, 5 | mp2an 672 | . 2 |
7 | fpwwe2.1 | . . . . 5 | |
8 | fpwwe2.2 | . . . . . 6 | |
9 | 8 | adantr 465 | . . . . 5 |
10 | fpwwe2.3 | . . . . . 6 | |
11 | 10 | adantlr 714 | . . . . 5 |
12 | fpwwe2lem10.4 | . . . . . 6 | |
13 | 12 | adantr 465 | . . . . 5 |
14 | fpwwe2lem10.6 | . . . . . 6 | |
15 | 14 | adantr 465 | . . . . 5 |
16 | simpr 461 | . . . . 5 | |
17 | 7, 9, 11, 13, 15, 1, 3, 16 | fpwwe2lem9 9037 | . . . 4 |
18 | 17 | ex 434 | . . 3 |
19 | 8 | adantr 465 | . . . . 5 |
20 | 10 | adantlr 714 | . . . . 5 |
21 | 14 | adantr 465 | . . . . 5 |
22 | 12 | adantr 465 | . . . . 5 |
23 | simpr 461 | . . . . 5 | |
24 | 7, 19, 20, 21, 22, 3, 1, 23 | fpwwe2lem9 9037 | . . . 4 |
25 | 24 | ex 434 | . . 3 |
26 | 18, 25 | orim12d 838 | . 2 |
27 | 6, 26 | mpi 17 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 \/ wo 368
/\ wa 369 /\ w3a 973 = wceq 1395
e. wcel 1818 A. wral 2807 cvv 3109
[. wsbc 3327 i^i cin 3474 C_ wss 3475
{ csn 4029 class class class wbr 4452
{ copab 4509 We wwe 4842
Ord word 4882
X. cxp 5002 `' ccnv 5003 dom cdm 5004
" cima 5007 (class class class)co 6296
OrdIso coi 7955 |
This theorem is referenced by: fpwwe2lem11 9039 fpwwe2lem12 9040 fpwwe2 9042 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-ov 6299 df-recs 7061 df-oi 7956 |
Copyright terms: Public domain | W3C validator |