![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fpwwe2lem11 | Unicode version |
Description: Lemma for fpwwe2 9042. (Contributed by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
fpwwe2.1 | |
fpwwe2.2 | |
fpwwe2.3 | |
fpwwe2.4 |
Ref | Expression |
---|---|
fpwwe2lem11 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fpwwe2.1 | . . . . . 6 | |
2 | 1 | relopabi 5133 | . . . . 5 |
3 | 2 | a1i 11 | . . . 4 |
4 | simprr 757 | . . . . . . . . 9 | |
5 | fpwwe2.2 | . . . . . . . . . . . . . . 15 | |
6 | 1, 5 | fpwwe2lem2 9031 | . . . . . . . . . . . . . 14 |
7 | 6 | simprbda 623 | . . . . . . . . . . . . 13 |
8 | 7 | simprd 463 | . . . . . . . . . . . 12 |
9 | 8 | adantrl 715 | . . . . . . . . . . 11 |
10 | 9 | adantr 465 | . . . . . . . . . 10 |
11 | df-ss 3489 | . . . . . . . . . 10 | |
12 | 10, 11 | sylib 196 | . . . . . . . . 9 |
13 | 4, 12 | eqtrd 2498 | . . . . . . . 8 |
14 | simprr 757 | . . . . . . . . 9 | |
15 | 1, 5 | fpwwe2lem2 9031 | . . . . . . . . . . . . . 14 |
16 | 15 | simprbda 623 | . . . . . . . . . . . . 13 |
17 | 16 | simprd 463 | . . . . . . . . . . . 12 |
18 | 17 | adantrr 716 | . . . . . . . . . . 11 |
19 | 18 | adantr 465 | . . . . . . . . . 10 |
20 | df-ss 3489 | . . . . . . . . . 10 | |
21 | 19, 20 | sylib 196 | . . . . . . . . 9 |
22 | 14, 21 | eqtr2d 2499 | . . . . . . . 8 |
23 | 5 | adantr 465 | . . . . . . . . 9 |
24 | fpwwe2.3 | . . . . . . . . . 10 | |
25 | 24 | adantlr 714 | . . . . . . . . 9 |
26 | simprl 756 | . . . . . . . . 9 | |
27 | simprr 757 | . . . . . . . . 9 | |
28 | 1, 23, 25, 26, 27 | fpwwe2lem10 9038 | . . . . . . . 8 |
29 | 13, 22, 28 | mpjaodan 786 | . . . . . . 7 |
30 | 29 | ex 434 | . . . . . 6 |
31 | 30 | alrimiv 1719 | . . . . 5 |
32 | 31 | alrimivv 1720 | . . . 4 |
33 | dffun2 5603 | . . . 4 | |
34 | 3, 32, 33 | sylanbrc 664 | . . 3 |
35 | funfn 5622 | . . 3 | |
36 | 34, 35 | sylib 196 | . 2 |
37 | vex 3112 | . . . . 5 | |
38 | 37 | elrn 5248 | . . . 4 |
39 | 2 | releldmi 5244 | . . . . . . . . . . . 12 |
40 | 39 | adantl 466 | . . . . . . . . . . 11 |
41 | elssuni 4279 | . . . . . . . . . . 11 | |
42 | 40, 41 | syl 16 | . . . . . . . . . 10 |
43 | fpwwe2.4 | . . . . . . . . . 10 | |
44 | 42, 43 | syl6sseqr 3550 | . . . . . . . . 9 |
45 | xpss12 5113 | . . . . . . . . 9 | |
46 | 44, 44, 45 | syl2anc 661 | . . . . . . . 8 |
47 | 17, 46 | sstrd 3513 | . . . . . . 7 |
48 | 47 | ex 434 | . . . . . 6 |
49 | selpw 4019 | . . . . . 6 | |
50 | 48, 49 | syl6ibr 227 | . . . . 5 |
51 | 50 | exlimdv 1724 | . . . 4 |
52 | 38, 51 | syl5bi 217 | . . 3 |
53 | 52 | ssrdv 3509 | . 2 |
54 | df-f 5597 | . 2 | |
55 | 36, 53, 54 | sylanbrc 664 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
/\ w3a 973 A. wal 1393 = wceq 1395
E. wex 1612 e. wcel 1818 A. wral 2807
cvv 3109
[. wsbc 3327 i^i cin 3474 C_ wss 3475
~P cpw 4012 { csn 4029 U. cuni 4249
class class class wbr 4452 { copab 4509 We wwe 4842
X. cxp 5002 `' ccnv 5003 dom cdm 5004
ran crn 5005 " cima 5007 Rel wrel 5009
Fun wfun 5587
Fn wfn 5588 --> wf 5589 (class class class)co 6296 |
This theorem is referenced by: fpwwe2lem13 9041 fpwwe2 9042 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-ov 6299 df-recs 7061 df-oi 7956 |
Copyright terms: Public domain | W3C validator |