![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fpwwe2lem5 | Unicode version |
Description: Lemma for fpwwe2 9042. (Contributed by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
fpwwe2.1 | |
fpwwe2.2 | |
fpwwe2.3 |
Ref | Expression |
---|---|
fpwwe2lem5 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fpwwe2.2 | . . . . 5 | |
2 | 1 | adantr 465 | . . . 4 |
3 | simpr1 1002 | . . . 4 | |
4 | 2, 3 | ssexd 4599 | . . 3 |
5 | xpexg 6602 | . . . . 5 | |
6 | 4, 4, 5 | syl2anc 661 | . . . 4 |
7 | simpr2 1003 | . . . 4 | |
8 | 6, 7 | ssexd 4599 | . . 3 |
9 | 4, 8 | jca 532 | . 2 |
10 | sseq1 3524 | . . . . . 6 | |
11 | xpeq12 5023 | . . . . . . . 8 | |
12 | 11 | anidms 645 | . . . . . . 7 |
13 | 12 | sseq2d 3531 | . . . . . 6 |
14 | weeq2 4873 | . . . . . 6 | |
15 | 10, 13, 14 | 3anbi123d 1299 | . . . . 5 |
16 | 15 | anbi2d 703 | . . . 4 |
17 | oveq1 6303 | . . . . 5 | |
18 | 17 | eleq1d 2526 | . . . 4 |
19 | 16, 18 | imbi12d 320 | . . 3 |
20 | sseq1 3524 | . . . . . 6 | |
21 | weeq1 4872 | . . . . . 6 | |
22 | 20, 21 | 3anbi23d 1302 | . . . . 5 |
23 | 22 | anbi2d 703 | . . . 4 |
24 | oveq2 6304 | . . . . 5 | |
25 | 24 | eleq1d 2526 | . . . 4 |
26 | 23, 25 | imbi12d 320 | . . 3 |
27 | fpwwe2.3 | . . 3 | |
28 | 19, 26, 27 | vtocl2g 3171 | . 2 |
29 | 9, 28 | mpcom 36 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
/\ w3a 973 = wceq 1395 e. wcel 1818
A. wral 2807 cvv 3109
[. wsbc 3327 i^i cin 3474 C_ wss 3475
{ csn 4029 { copab 4509 We wwe 4842
X. cxp 5002 `' ccnv 5003 " cima 5007
(class class class)co 6296 |
This theorem is referenced by: fpwwe2lem13 9041 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-xp 5010 df-iota 5556 df-fv 5601 df-ov 6299 |
Copyright terms: Public domain | W3C validator |