![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fpwwe2lem6 | Unicode version |
Description: Lemma for fpwwe2 9042. (Contributed by Mario Carneiro, 18-May-2015.) |
Ref | Expression |
---|---|
fpwwe2.1 | |
fpwwe2.2 | |
fpwwe2.3 | |
fpwwe2lem9.x | |
fpwwe2lem9.y | |
fpwwe2lem9.m | |
fpwwe2lem9.n | |
fpwwe2lem7.1 | |
fpwwe2lem7.2 | |
fpwwe2lem7.3 |
Ref | Expression |
---|---|
fpwwe2lem6 |
M
,,,, N
,,,, ,,,, ,, ,,,, ,,,, S
,,,, ,,,,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fpwwe2lem9.x | . . . . . . . 8 | |
2 | fpwwe2.1 | . . . . . . . . 9 | |
3 | fpwwe2.2 | . . . . . . . . 9 | |
4 | 2, 3 | fpwwe2lem2 9031 | . . . . . . . 8 |
5 | 1, 4 | mpbid 210 | . . . . . . 7 |
6 | 5 | simpld 459 | . . . . . 6 |
7 | 6 | simprd 463 | . . . . 5 |
8 | 7 | ssbrd 4493 | . . . 4 |
9 | brxp 5035 | . . . . 5 | |
10 | 9 | simplbi 460 | . . . 4 |
11 | 8, 10 | syl6 33 | . . 3 |
12 | 11 | imp 429 | . 2 |
13 | imassrn 5353 | . . . 4 | |
14 | fpwwe2lem9.y | . . . . . . . . 9 | |
15 | 2 | relopabi 5133 | . . . . . . . . . 10 |
16 | 15 | brrelexi 5045 | . . . . . . . . 9 |
17 | 14, 16 | syl 16 | . . . . . . . 8 |
18 | 2, 3 | fpwwe2lem2 9031 | . . . . . . . . . . 11 |
19 | 14, 18 | mpbid 210 | . . . . . . . . . 10 |
20 | 19 | simprd 463 | . . . . . . . . 9 |
21 | 20 | simpld 459 | . . . . . . . 8 |
22 | fpwwe2lem9.n | . . . . . . . . 9 | |
23 | 22 | oiiso 7983 | . . . . . . . 8 |
24 | 17, 21, 23 | syl2anc 661 | . . . . . . 7 |
25 | 24 | adantr 465 | . . . . . 6 |
26 | isof1o 6221 | . . . . . 6 | |
27 | 25, 26 | syl 16 | . . . . 5 |
28 | f1ofo 5828 | . . . . 5 | |
29 | forn 5803 | . . . . 5 | |
30 | 27, 28, 29 | 3syl 20 | . . . 4 |
31 | 13, 30 | syl5sseq 3551 | . . 3 |
32 | 15 | brrelexi 5045 | . . . . . . . . . . . . . 14 |
33 | 1, 32 | syl 16 | . . . . . . . . . . . . 13 |
34 | 5 | simprd 463 | . . . . . . . . . . . . . 14 |
35 | 34 | simpld 459 | . . . . . . . . . . . . 13 |
36 | fpwwe2lem9.m | . . . . . . . . . . . . . 14 | |
37 | 36 | oiiso 7983 | . . . . . . . . . . . . 13 |
38 | 33, 35, 37 | syl2anc 661 | . . . . . . . . . . . 12 |
39 | 38 | adantr 465 | . . . . . . . . . . 11 |
40 | isof1o 6221 | . . . . . . . . . . 11 | |
41 | 39, 40 | syl 16 | . . . . . . . . . 10 |
42 | f1ocnvfv2 6183 | . . . . . . . . . 10 | |
43 | 41, 12, 42 | syl2anc 661 | . . . . . . . . 9 |
44 | simpr 461 | . . . . . . . . 9 | |
45 | 43, 44 | eqbrtrd 4472 | . . . . . . . 8 |
46 | f1ocnv 5833 | . . . . . . . . . . 11 | |
47 | f1of 5821 | . . . . . . . . . . 11 | |
48 | 41, 46, 47 | 3syl 20 | . . . . . . . . . 10 |
49 | 48, 12 | ffvelrnd 6032 | . . . . . . . . 9 |
50 | fpwwe2lem7.1 | . . . . . . . . . 10 | |
51 | 50 | adantr 465 | . . . . . . . . 9 |
52 | isorel 6222 | . . . . . . . . 9 | |
53 | 39, 49, 51, 52 | syl12anc 1226 | . . . . . . . 8 |
54 | 45, 53 | mpbird 232 | . . . . . . 7 |
55 | epelg 4797 | . . . . . . . 8 | |
56 | 51, 55 | syl 16 | . . . . . . 7 |
57 | 54, 56 | mpbid 210 | . . . . . 6 |
58 | ffn 5736 | . . . . . . 7 | |
59 | elpreima 6007 | . . . . . . 7 | |
60 | 48, 58, 59 | 3syl 20 | . . . . . 6 |
61 | 12, 57, 60 | mpbir2and 922 | . . . . 5 |
62 | imacnvcnv 5477 | . . . . 5 | |
63 | 61, 62 | syl6eleq 2555 | . . . 4 |
64 | fpwwe2lem7.3 | . . . . . . 7 | |
65 | 64 | adantr 465 | . . . . . 6 |
66 | 65 | rneqd 5235 | . . . . 5 |
67 | df-ima 5017 | . . . . 5 | |
68 | df-ima 5017 | . . . . 5 | |
69 | 66, 67, 68 | 3eqtr4g 2523 | . . . 4 |
70 | 63, 69 | eleqtrd 2547 | . . 3 |
71 | 31, 70 | sseldd 3504 | . 2 |
72 | 65 | cnveqd 5183 | . . . . 5 |
73 | dff1o3 5827 | . . . . . . 7 | |
74 | 73 | simprbi 464 | . . . . . 6 |
75 | funcnvres 5662 | . . . . . 6 | |
76 | 41, 74, 75 | 3syl 20 | . . . . 5 |
77 | dff1o3 5827 | . . . . . . 7 | |
78 | 77 | simprbi 464 | . . . . . 6 |
79 | funcnvres 5662 | . . . . . 6 | |
80 | 27, 78, 79 | 3syl 20 | . . . . 5 |
81 | 72, 76, 80 | 3eqtr3d 2506 | . . . 4 |
82 | 81 | fveq1d 5873 | . . 3 |
83 | fvres 5885 | . . . 4 | |
84 | 63, 83 | syl 16 | . . 3 |
85 | fvres 5885 | . . . 4 | |
86 | 70, 85 | syl 16 | . . 3 |
87 | 82, 84, 86 | 3eqtr3d 2506 | . 2 |
88 | 12, 71, 87 | 3jca 1176 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 = wceq 1395
e. wcel 1818 A. wral 2807 cvv 3109
[. wsbc 3327 i^i cin 3474 C_ wss 3475
{ csn 4029 class class class wbr 4452
{ copab 4509 cep 4794
We wwe 4842 X. cxp 5002 `' ccnv 5003
dom cdm 5004 ran crn 5005 |` cres 5006
" cima 5007 Fun wfun 5587 Fn wfn 5588
--> wf 5589 -onto-> wfo 5591 -1-1-onto-> wf1o 5592 ` cfv 5593 Isom wiso 5594
(class class class)co 6296 OrdIso coi 7955 |
This theorem is referenced by: fpwwe2lem7 9035 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-ov 6299 df-recs 7061 df-oi 7956 |
Copyright terms: Public domain | W3C validator |