![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fpwwelem | Unicode version |
Description: Lemma for fpwwe 9045. (Contributed by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
fpwwe.1 | |
fpwwe.2 |
Ref | Expression |
---|---|
fpwwelem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fpwwe.1 | . . . . 5 | |
2 | 1 | relopabi 5133 | . . . 4 |
3 | 2 | a1i 11 | . . 3 |
4 | brrelex12 5042 | . . 3 | |
5 | 3, 4 | sylan 471 | . 2 |
6 | fpwwe.2 | . . . . 5 | |
7 | 6 | adantr 465 | . . . 4 |
8 | simprll 763 | . . . 4 | |
9 | 7, 8 | ssexd 4599 | . . 3 |
10 | xpexg 6602 | . . . . 5 | |
11 | 9, 9, 10 | syl2anc 661 | . . . 4 |
12 | simprlr 764 | . . . 4 | |
13 | 11, 12 | ssexd 4599 | . . 3 |
14 | 9, 13 | jca 532 | . 2 |
15 | simpl 457 | . . . . . 6 | |
16 | 15 | sseq1d 3530 | . . . . 5 |
17 | simpr 461 | . . . . . 6 | |
18 | 15 | sqxpeqd 5030 | . . . . . 6 |
19 | 17, 18 | sseq12d 3532 | . . . . 5 |
20 | 16, 19 | anbi12d 710 | . . . 4 |
21 | weeq2 4873 | . . . . . 6 | |
22 | weeq1 4872 | . . . . . 6 | |
23 | 21, 22 | sylan9bb 699 | . . . . 5 |
24 | 17 | cnveqd 5183 | . . . . . . . . 9 |
25 | 24 | imaeq1d 5341 | . . . . . . . 8 |
26 | 25 | fveq2d 5875 | . . . . . . 7 |
27 | 26 | eqeq1d 2459 | . . . . . 6 |
28 | 15, 27 | raleqbidv 3068 | . . . . 5 |
29 | 23, 28 | anbi12d 710 | . . . 4 |
30 | 20, 29 | anbi12d 710 | . . 3 |
31 | 30, 1 | brabga 4766 | . 2 |
32 | 5, 14, 31 | pm5.21nd 900 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
A. wral 2807 cvv 3109
C_ wss 3475 { csn 4029 class class class wbr 4452
{ copab 4509 We wwe 4842
X. cxp 5002 `' ccnv 5003 " cima 5007
Rel wrel 5009
` cfv 5593 |
This theorem is referenced by: canth4 9046 canthnumlem 9047 canthp1lem2 9052 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-xp 5010 df-rel 5011 df-cnv 5012 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fv 5601 |
Copyright terms: Public domain | W3C validator |