![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > freq1 | Unicode version |
Description: Equality theorem for the well-founded predicate. (Contributed by NM, 9-Mar-1997.) |
Ref | Expression |
---|---|
freq1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq 4454 | . . . . . 6 | |
2 | 1 | notbid 294 | . . . . 5 |
3 | 2 | rexralbidv 2976 | . . . 4 |
4 | 3 | imbi2d 316 | . . 3 |
5 | 4 | albidv 1713 | . 2 |
6 | df-fr 4843 | . 2 | |
7 | df-fr 4843 | . 2 | |
8 | 5, 6, 7 | 3bitr4g 288 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 A. wal 1393
= wceq 1395 =/= wne 2652 A. wral 2807
E. wrex 2808 C_ wss 3475 c0 3784 class class class wbr 4452
Fr wfr 4840 |
This theorem is referenced by: weeq1 4872 freq12d 30984 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-cleq 2449 df-clel 2452 df-ral 2812 df-rex 2813 df-br 4453 df-fr 4843 |
Copyright terms: Public domain | W3C validator |