Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  freq1 Unicode version

Theorem freq1 4854
 Description: Equality theorem for the well-founded predicate. (Contributed by NM, 9-Mar-1997.)
Assertion
Ref Expression
freq1

Proof of Theorem freq1
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq 4454 . . . . . 6
21notbid 294 . . . . 5
32rexralbidv 2976 . . . 4
43imbi2d 316 . . 3
54albidv 1713 . 2
6 df-fr 4843 . 2
7 df-fr 4843 . 2
85, 6, 73bitr4g 288 1
 Colors of variables: wff setvar class Syntax hints:  -.wn 3  ->wi 4  <->wb 184  /\wa 369  A.wal 1393  =wceq 1395  =/=wne 2652  A.wral 2807  E.wrex 2808  C_wss 3475   c0 3784   class class class wbr 4452  Frwfr 4840 This theorem is referenced by:  weeq1  4872  freq12d  30984 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613  df-cleq 2449  df-clel 2452  df-ral 2812  df-rex 2813  df-br 4453  df-fr 4843
 Copyright terms: Public domain W3C validator