![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fresaunres1 | Unicode version |
Description: From the union of two functions that agree on the domain overlap, either component can be recovered by restriction. (Contributed by Mario Carneiro, 16-Feb-2015.) |
Ref | Expression |
---|---|
fresaunres1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uncom 3647 | . . 3 | |
2 | 1 | reseq1i 5274 | . 2 |
3 | incom 3690 | . . . . . 6 | |
4 | 3 | reseq2i 5275 | . . . . 5 |
5 | 3 | reseq2i 5275 | . . . . 5 |
6 | 4, 5 | eqeq12i 2477 | . . . 4 |
7 | eqcom 2466 | . . . 4 | |
8 | 6, 7 | bitri 249 | . . 3 |
9 | fresaunres2 5762 | . . . 4 | |
10 | 9 | 3com12 1200 | . . 3 |
11 | 8, 10 | syl3an3b 1266 | . 2 |
12 | 2, 11 | syl5eq 2510 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ w3a 973
= wceq 1395 u. cun 3473 i^i cin 3474
|` cres 5006 --> wf 5589 |
This theorem is referenced by: mapunen 7706 hashf1lem1 12504 ptuncnv 20308 resf1o 27553 cvmliftlem10 28739 aacllem 33216 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 df-opab 4511 df-xp 5010 df-rel 5011 df-dm 5014 df-res 5016 df-fun 5595 df-fn 5596 df-f 5597 |
Copyright terms: Public domain | W3C validator |