![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fresaunres2 | Unicode version |
Description: From the union of two functions that agree on the domain overlap, either component can be recovered by restriction. (Contributed by Stefan O'Rear, 9-Oct-2014.) |
Ref | Expression |
---|---|
fresaunres2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 5736 | . . . 4 | |
2 | ffn 5736 | . . . 4 | |
3 | id 22 | . . . 4 | |
4 | resasplit 5760 | . . . 4 | |
5 | 1, 2, 3, 4 | syl3an 1270 | . . 3 |
6 | 5 | reseq1d 5277 | . 2 |
7 | resundir 5293 | . . 3 | |
8 | inss2 3718 | . . . . . 6 | |
9 | resabs2 5309 | . . . . . 6 | |
10 | 8, 9 | ax-mp 5 | . . . . 5 |
11 | resundir 5293 | . . . . 5 | |
12 | 10, 11 | uneq12i 3655 | . . . 4 |
13 | dmres 5299 | . . . . . . . . 9 | |
14 | dmres 5299 | . . . . . . . . . . 11 | |
15 | 14 | ineq2i 3696 | . . . . . . . . . 10 |
16 | disjdif 3900 | . . . . . . . . . . . 12 | |
17 | 16 | ineq1i 3695 | . . . . . . . . . . 11 |
18 | inass 3707 | . . . . . . . . . . 11 | |
19 | inss1 3717 | . . . . . . . . . . . 12 | |
20 | 0ss 3814 | . . . . . . . . . . . 12 | |
21 | 19, 20 | eqssi 3519 | . . . . . . . . . . 11 |
22 | 17, 18, 21 | 3eqtr3i 2494 | . . . . . . . . . 10 |
23 | 15, 22 | eqtri 2486 | . . . . . . . . 9 |
24 | 13, 23 | eqtri 2486 | . . . . . . . 8 |
25 | relres 5306 | . . . . . . . . 9 | |
26 | reldm0 5225 | . . . . . . . . 9 | |
27 | 25, 26 | ax-mp 5 | . . . . . . . 8 |
28 | 24, 27 | mpbir 209 | . . . . . . 7 |
29 | difss 3630 | . . . . . . . 8 | |
30 | resabs2 5309 | . . . . . . . 8 | |
31 | 29, 30 | ax-mp 5 | . . . . . . 7 |
32 | 28, 31 | uneq12i 3655 | . . . . . 6 |
33 | 32 | uneq2i 3654 | . . . . 5 |
34 | simp3 998 | . . . . . . 7 | |
35 | 34 | uneq1d 3656 | . . . . . 6 |
36 | uncom 3647 | . . . . . . . . . 10 | |
37 | un0 3810 | . . . . . . . . . 10 | |
38 | 36, 37 | eqtri 2486 | . . . . . . . . 9 |
39 | 38 | uneq2i 3654 | . . . . . . . 8 |
40 | resundi 5292 | . . . . . . . . 9 | |
41 | incom 3690 | . . . . . . . . . . . . 13 | |
42 | 41 | uneq1i 3653 | . . . . . . . . . . . 12 |
43 | inundif 3906 | . . . . . . . . . . . 12 | |
44 | 42, 43 | eqtri 2486 | . . . . . . . . . . 11 |
45 | 44 | reseq2i 5275 | . . . . . . . . . 10 |
46 | fnresdm 5695 | . . . . . . . . . . . 12 | |
47 | 2, 46 | syl 16 | . . . . . . . . . . 11 |
48 | 47 | adantl 466 | . . . . . . . . . 10 |
49 | 45, 48 | syl5eq 2510 | . . . . . . . . 9 |
50 | 40, 49 | syl5eqr 2512 | . . . . . . . 8 |
51 | 39, 50 | syl5eq 2510 | . . . . . . 7 |
52 | 51 | 3adant3 1016 | . . . . . 6 |
53 | 35, 52 | eqtrd 2498 | . . . . 5 |
54 | 33, 53 | syl5eq 2510 | . . . 4 |
55 | 12, 54 | syl5eq 2510 | . . 3 |
56 | 7, 55 | syl5eq 2510 | . 2 |
57 | 6, 56 | eqtrd 2498 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 = wceq 1395
\ cdif 3472 u. cun 3473 i^i cin 3474
C_ wss 3475 c0 3784 dom cdm 5004 |` cres 5006
Rel wrel 5009
Fn wfn 5588 --> wf 5589 |
This theorem is referenced by: fresaunres1 5763 mapunen 7706 ptuncnv 20308 cvmliftlem10 28739 elmapresaunres2 30705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 df-opab 4511 df-xp 5010 df-rel 5011 df-dm 5014 df-res 5016 df-fun 5595 df-fn 5596 df-f 5597 |
Copyright terms: Public domain | W3C validator |