![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fresison | Unicode version |
Description: "Fresison", one of the syllogisms of Aristotelian logic. No is (PeM), and some is (MiS), therefore some is not (SoP). (In Aristotelian notation, EIO-4: PeM and MiS therefore SoP.) (Contributed by David A. Wheeler, 28-Aug-2016.) (Revised by David A. Wheeler, 2-Sep-2016.) |
Ref | Expression |
---|---|
fresison.maj | |
fresison.min |
Ref | Expression |
---|---|
fresison |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fresison.min | . 2 | |
2 | simpr 461 | . . 3 | |
3 | fresison.maj | . . . . . 6 | |
4 | 3 | spi 1864 | . . . . 5 |
5 | 4 | con2i 120 | . . . 4 |
6 | 5 | adantr 465 | . . 3 |
7 | 2, 6 | jca 532 | . 2 |
8 | 1, 7 | eximii 1658 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 A. wal 1393 E. wex 1612 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-12 1854 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 |
Copyright terms: Public domain | W3C validator |