MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frinxp Unicode version

Theorem frinxp 5070
Description: Intersection of well-founded relation with Cartesian product of its field. (Contributed by Mario Carneiro, 10-Jul-2014.)
Assertion
Ref Expression
frinxp

Proof of Theorem frinxp
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3497 . . . . . . . . . . 11
2 ssel 3497 . . . . . . . . . . 11
31, 2anim12d 563 . . . . . . . . . 10
4 brinxp 5067 . . . . . . . . . . 11
54ancoms 453 . . . . . . . . . 10
63, 5syl6 33 . . . . . . . . 9
76impl 620 . . . . . . . 8
87notbid 294 . . . . . . 7
98ralbidva 2893 . . . . . 6
109rexbidva 2965 . . . . 5
1110adantr 465 . . . 4
1211pm5.74i 245 . . 3
1312albii 1640 . 2
14 df-fr 4843 . 2
15 df-fr 4843 . 2
1613, 14, 153bitr4i 277 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  <->wb 184  /\wa 369  A.wal 1393  e.wcel 1818  =/=wne 2652  A.wral 2807  E.wrex 2808  i^icin 3474  C_wss 3475   c0 3784   class class class wbr 4452  Frwfr 4840  X.cxp 5002
This theorem is referenced by:  weinxp  5072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pr 4691
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-br 4453  df-opab 4511  df-fr 4843  df-xp 5010
  Copyright terms: Public domain W3C validator