![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > frinxp | Unicode version |
Description: Intersection of well-founded relation with Cartesian product of its field. (Contributed by Mario Carneiro, 10-Jul-2014.) |
Ref | Expression |
---|---|
frinxp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3497 | . . . . . . . . . . 11 | |
2 | ssel 3497 | . . . . . . . . . . 11 | |
3 | 1, 2 | anim12d 563 | . . . . . . . . . 10 |
4 | brinxp 5067 | . . . . . . . . . . 11 | |
5 | 4 | ancoms 453 | . . . . . . . . . 10 |
6 | 3, 5 | syl6 33 | . . . . . . . . 9 |
7 | 6 | impl 620 | . . . . . . . 8 |
8 | 7 | notbid 294 | . . . . . . 7 |
9 | 8 | ralbidva 2893 | . . . . . 6 |
10 | 9 | rexbidva 2965 | . . . . 5 |
11 | 10 | adantr 465 | . . . 4 |
12 | 11 | pm5.74i 245 | . . 3 |
13 | 12 | albii 1640 | . 2 |
14 | df-fr 4843 | . 2 | |
15 | df-fr 4843 | . 2 | |
16 | 13, 14, 15 | 3bitr4i 277 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 A. wal 1393
e. wcel 1818 =/= wne 2652 A. wral 2807
E. wrex 2808 i^i cin 3474 C_ wss 3475
c0 3784 class class class wbr 4452
Fr wfr 4840 X. cxp 5002 |
This theorem is referenced by: weinxp 5072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 df-opab 4511 df-fr 4843 df-xp 5010 |
Copyright terms: Public domain | W3C validator |