![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > frirr | Unicode version |
Description: A well-founded relation is irreflexive. Special case of Proposition 6.23 of [TakeutiZaring] p. 30. (Contributed by NM, 2-Jan-1994.) (Revised by Mario Carneiro, 22-Jun-2015.) |
Ref | Expression |
---|---|
frirr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 457 | . . 3 | |
2 | simpr 461 | . . . 4 | |
3 | 2 | snssd 4175 | . . 3 |
4 | snnzg 4147 | . . . 4 | |
5 | 4 | adantl 466 | . . 3 |
6 | snex 4693 | . . . 4 | |
7 | 6 | frc 4850 | . . 3 |
8 | 1, 3, 5, 7 | syl3anc 1228 | . 2 |
9 | rabeq0 3807 | . . . . . 6 | |
10 | breq2 4456 | . . . . . . . 8 | |
11 | 10 | notbid 294 | . . . . . . 7 |
12 | 11 | ralbidv 2896 | . . . . . 6 |
13 | 9, 12 | syl5bb 257 | . . . . 5 |
14 | 13 | rexsng 4065 | . . . 4 |
15 | breq1 4455 | . . . . . 6 | |
16 | 15 | notbid 294 | . . . . 5 |
17 | 16 | ralsng 4064 | . . . 4 |
18 | 14, 17 | bitrd 253 | . . 3 |
19 | 18 | adantl 466 | . 2 |
20 | 8, 19 | mpbid 210 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 = wceq 1395
e. wcel 1818 =/= wne 2652 A. wral 2807
E. wrex 2808 { crab 2811 C_ wss 3475
c0 3784 { csn 4029 class class class wbr 4452
Fr wfr 4840 |
This theorem is referenced by: efrirr 4865 dfwe2 6617 efrunt 29085 predfrirr 29278 ifr0 31359 bnj1417 34097 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 df-fr 4843 |
Copyright terms: Public domain | W3C validator |