![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fseq1p1m1 | Unicode version |
Description: Add/remove an item to/from the end of a finite sequence. (Contributed by Paul Chapman, 17-Nov-2012.) (Revised by Mario Carneiro, 7-Mar-2014.) |
Ref | Expression |
---|---|
fseq1p1m1.1 |
Ref | Expression |
---|---|
fseq1p1m1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr1 1002 | . . . . . 6 | |
2 | nn0p1nn 10860 | . . . . . . . . 9 | |
3 | 2 | adantr 465 | . . . . . . . 8 |
4 | simpr2 1003 | . . . . . . . 8 | |
5 | fseq1p1m1.1 | . . . . . . . . 9 | |
6 | fsng 6070 | . . . . . . . . 9 | |
7 | 5, 6 | mpbiri 233 | . . . . . . . 8 |
8 | 3, 4, 7 | syl2anc 661 | . . . . . . 7 |
9 | 4 | snssd 4175 | . . . . . . 7 |
10 | 8, 9 | fssd 5745 | . . . . . 6 |
11 | fzp1disj 11767 | . . . . . . 7 | |
12 | 11 | a1i 11 | . . . . . 6 |
13 | fun2 5754 | . . . . . 6 | |
14 | 1, 10, 12, 13 | syl21anc 1227 | . . . . 5 |
15 | 1z 10919 | . . . . . . . 8 | |
16 | simpl 457 | . . . . . . . . 9 | |
17 | nn0uz 11144 | . . . . . . . . . 10 | |
18 | 1m1e0 10629 | . . . . . . . . . . 11 | |
19 | 18 | fveq2i 5874 | . . . . . . . . . 10 |
20 | 17, 19 | eqtr4i 2489 | . . . . . . . . 9 |
21 | 16, 20 | syl6eleq 2555 | . . . . . . . 8 |
22 | fzsuc2 11766 | . . . . . . . 8 | |
23 | 15, 21, 22 | sylancr 663 | . . . . . . 7 |
24 | 23 | eqcomd 2465 | . . . . . 6 |
25 | 24 | feq2d 5723 | . . . . 5 |
26 | 14, 25 | mpbid 210 | . . . 4 |
27 | simpr3 1004 | . . . . 5 | |
28 | 27 | feq1d 5722 | . . . 4 |
29 | 26, 28 | mpbird 232 | . . 3 |
30 | ovex 6324 | . . . . . 6 | |
31 | 30 | snid 4057 | . . . . 5 |
32 | fvres 5885 | . . . . 5 | |
33 | 31, 32 | ax-mp 5 | . . . 4 |
34 | 27 | reseq1d 5277 | . . . . . . 7 |
35 | ffn 5736 | . . . . . . . . . . 11 | |
36 | fnresdisj 5696 | . . . . . . . . . . 11 | |
37 | 1, 35, 36 | 3syl 20 | . . . . . . . . . 10 |
38 | 12, 37 | mpbid 210 | . . . . . . . . 9 |
39 | 38 | uneq1d 3656 | . . . . . . . 8 |
40 | resundir 5293 | . . . . . . . 8 | |
41 | uncom 3647 | . . . . . . . . 9 | |
42 | un0 3810 | . . . . . . . . 9 | |
43 | 41, 42 | eqtr2i 2487 | . . . . . . . 8 |
44 | 39, 40, 43 | 3eqtr4g 2523 | . . . . . . 7 |
45 | ffn 5736 | . . . . . . . 8 | |
46 | fnresdm 5695 | . . . . . . . 8 | |
47 | 10, 45, 46 | 3syl 20 | . . . . . . 7 |
48 | 34, 44, 47 | 3eqtrd 2502 | . . . . . 6 |
49 | 48 | fveq1d 5873 | . . . . 5 |
50 | 5 | fveq1i 5872 | . . . . . . 7 |
51 | fvsng 6105 | . . . . . . 7 | |
52 | 50, 51 | syl5eq 2510 | . . . . . 6 |
53 | 3, 4, 52 | syl2anc 661 | . . . . 5 |
54 | 49, 53 | eqtrd 2498 | . . . 4 |
55 | 33, 54 | syl5eqr 2512 | . . 3 |
56 | 27 | reseq1d 5277 | . . . 4 |
57 | incom 3690 | . . . . . . . 8 | |
58 | 57, 12 | syl5eq 2510 | . . . . . . 7 |
59 | ffn 5736 | . . . . . . . 8 | |
60 | fnresdisj 5696 | . . . . . . . 8 | |
61 | 8, 59, 60 | 3syl 20 | . . . . . . 7 |
62 | 58, 61 | mpbid 210 | . . . . . 6 |
63 | 62 | uneq2d 3657 | . . . . 5 |
64 | resundir 5293 | . . . . 5 | |
65 | un0 3810 | . . . . . 6 | |
66 | 65 | eqcomi 2470 | . . . . 5 |
67 | 63, 64, 66 | 3eqtr4g 2523 | . . . 4 |
68 | fnresdm 5695 | . . . . 5 | |
69 | 1, 35, 68 | 3syl 20 | . . . 4 |
70 | 56, 67, 69 | 3eqtrrd 2503 | . . 3 |
71 | 29, 55, 70 | 3jca 1176 | . 2 |
72 | simpr1 1002 | . . . . 5 | |
73 | fzssp1 11755 | . . . . 5 | |
74 | fssres 5756 | . . . . 5 | |
75 | 72, 73, 74 | sylancl 662 | . . . 4 |
76 | simpr3 1004 | . . . . 5 | |
77 | 76 | feq1d 5722 | . . . 4 |
78 | 75, 77 | mpbird 232 | . . 3 |
79 | simpr2 1003 | . . . 4 | |
80 | 2 | adantr 465 | . . . . . . 7 |
81 | nnuz 11145 | . . . . . . 7 | |
82 | 80, 81 | syl6eleq 2555 | . . . . . 6 |
83 | eluzfz2 11723 | . . . . . 6 | |
84 | 82, 83 | syl 16 | . . . . 5 |
85 | 72, 84 | ffvelrnd 6032 | . . . 4 |
86 | 79, 85 | eqeltrrd 2546 | . . 3 |
87 | ffn 5736 | . . . . . . . . 9 | |
88 | 72, 87 | syl 16 | . . . . . . . 8 |
89 | fnressn 6083 | . . . . . . . 8 | |
90 | 88, 84, 89 | syl2anc 661 | . . . . . . 7 |
91 | opeq2 4218 | . . . . . . . . 9 | |
92 | 91 | sneqd 4041 | . . . . . . . 8 |
93 | 79, 92 | syl 16 | . . . . . . 7 |
94 | 90, 93 | eqtrd 2498 | . . . . . 6 |
95 | 94, 5 | syl6reqr 2517 | . . . . 5 |
96 | 76, 95 | uneq12d 3658 | . . . 4 |
97 | simpl 457 | . . . . . . . 8 | |
98 | 97, 20 | syl6eleq 2555 | . . . . . . 7 |
99 | 15, 98, 22 | sylancr 663 | . . . . . 6 |
100 | 99 | reseq2d 5278 | . . . . 5 |
101 | resundi 5292 | . . . . 5 | |
102 | 100, 101 | syl6req 2515 | . . . 4 |
103 | fnresdm 5695 | . . . . 5 | |
104 | 72, 87, 103 | 3syl 20 | . . . 4 |
105 | 96, 102, 104 | 3eqtrrd 2503 | . . 3 |
106 | 78, 86, 105 | 3jca 1176 | . 2 |
107 | 71, 106 | impbida 832 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 = wceq 1395
e. wcel 1818 u. cun 3473 i^i cin 3474
C_ wss 3475 c0 3784 { csn 4029 <. cop 4035
|` cres 5006 Fn wfn 5588 --> wf 5589
` cfv 5593 (class class class)co 6296
0 cc0 9513 1 c1 9514 caddc 9516 cmin 9828 cn 10561 cn0 10820
cz 10889 cuz 11110
cfz 11701 |
This theorem is referenced by: fseq1m1p1 11782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-nn 10562 df-n0 10821 df-z 10890 df-uz 11111 df-fz 11702 |
Copyright terms: Public domain | W3C validator |