![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fsnunfv | Unicode version |
Description: Recover the added point from a point-added function. (Contributed by Stefan O'Rear, 28-Feb-2015.) (Revised by NM, 18-May-2017.) |
Ref | Expression |
---|---|
fsnunfv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmres 5299 | . . . . . . . . 9 | |
2 | incom 3690 | . . . . . . . . 9 | |
3 | 1, 2 | eqtri 2486 | . . . . . . . 8 |
4 | disjsn 4090 | . . . . . . . . 9 | |
5 | 4 | biimpri 206 | . . . . . . . 8 |
6 | 3, 5 | syl5eq 2510 | . . . . . . 7 |
7 | 6 | 3ad2ant3 1019 | . . . . . 6 |
8 | relres 5306 | . . . . . . 7 | |
9 | reldm0 5225 | . . . . . . 7 | |
10 | 8, 9 | ax-mp 5 | . . . . . 6 |
11 | 7, 10 | sylibr 212 | . . . . 5 |
12 | fnsng 5640 | . . . . . . 7 | |
13 | 12 | 3adant3 1016 | . . . . . 6 |
14 | fnresdm 5695 | . . . . . 6 | |
15 | 13, 14 | syl 16 | . . . . 5 |
16 | 11, 15 | uneq12d 3658 | . . . 4 |
17 | resundir 5293 | . . . 4 | |
18 | uncom 3647 | . . . . 5 | |
19 | un0 3810 | . . . . 5 | |
20 | 18, 19 | eqtr2i 2487 | . . . 4 |
21 | 16, 17, 20 | 3eqtr4g 2523 | . . 3 |
22 | 21 | fveq1d 5873 | . 2 |
23 | snidg 4055 | . . . 4 | |
24 | 23 | 3ad2ant1 1017 | . . 3 |
25 | fvres 5885 | . . 3 | |
26 | 24, 25 | syl 16 | . 2 |
27 | fvsng 6105 | . . 3 | |
28 | 27 | 3adant3 1016 | . 2 |
29 | 22, 26, 28 | 3eqtr3d 2506 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ w3a 973 = wceq 1395
e. wcel 1818 u. cun 3473 i^i cin 3474
c0 3784 { csn 4029 <. cop 4035
dom cdm 5004 |` cres 5006 Rel wrel 5009
Fn wfn 5588 ` cfv 5593 |
This theorem is referenced by: hashf1lem1 12504 cats1un 12701 fvsetsid 14657 islindf4 18873 mapfzcons2 30651 fnchoice 31404 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-res 5016 df-iota 5556 df-fun 5595 df-fn 5596 df-fv 5601 |
Copyright terms: Public domain | W3C validator |