![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fsumadd | Unicode version |
Description: The sum of two finite sums. (Contributed by NM, 14-Nov-2005.) (Revised by Mario Carneiro, 22-Apr-2014.) |
Ref | Expression |
---|---|
fsumadd.1 | |
fsumadd.2 | |
fsumadd.3 |
Ref | Expression |
---|---|
fsumadd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 00id 9776 | . . . . 5 | |
2 | sum0 13543 | . . . . . 6 | |
3 | sum0 13543 | . . . . . 6 | |
4 | 2, 3 | oveq12i 6308 | . . . . 5 |
5 | sum0 13543 | . . . . 5 | |
6 | 1, 4, 5 | 3eqtr4ri 2497 | . . . 4 |
7 | sumeq1 13511 | . . . 4 | |
8 | sumeq1 13511 | . . . . 5 | |
9 | sumeq1 13511 | . . . . 5 | |
10 | 8, 9 | oveq12d 6314 | . . . 4 |
11 | 6, 7, 10 | 3eqtr4a 2524 | . . 3 |
12 | 11 | a1i 11 | . 2 |
13 | simprl 756 | . . . . . . . . 9 | |
14 | nnuz 11145 | . . . . . . . . 9 | |
15 | 13, 14 | syl6eleq 2555 | . . . . . . . 8 |
16 | fsumadd.2 | . . . . . . . . . . . 12 | |
17 | 16 | adantlr 714 | . . . . . . . . . . 11 |
18 | eqid 2457 | . . . . . . . . . . 11 | |
19 | 17, 18 | fmptd 6055 | . . . . . . . . . 10 |
20 | simprr 757 | . . . . . . . . . . 11 | |
21 | f1of 5821 | . . . . . . . . . . 11 | |
22 | 20, 21 | syl 16 | . . . . . . . . . 10 |
23 | fco 5746 | . . . . . . . . . 10 | |
24 | 19, 22, 23 | syl2anc 661 | . . . . . . . . 9 |
25 | 24 | ffvelrnda 6031 | . . . . . . . 8 |
26 | fsumadd.3 | . . . . . . . . . . . 12 | |
27 | 26 | adantlr 714 | . . . . . . . . . . 11 |
28 | eqid 2457 | . . . . . . . . . . 11 | |
29 | 27, 28 | fmptd 6055 | . . . . . . . . . 10 |
30 | fco 5746 | . . . . . . . . . 10 | |
31 | 29, 22, 30 | syl2anc 661 | . . . . . . . . 9 |
32 | 31 | ffvelrnda 6031 | . . . . . . . 8 |
33 | 22 | ffvelrnda 6031 | . . . . . . . . . 10 |
34 | ovex 6324 | . . . . . . . . . . . . . . 15 | |
35 | eqid 2457 | . . . . . . . . . . . . . . . 16 | |
36 | 35 | fvmpt2 5963 | . . . . . . . . . . . . . . 15 |
37 | 34, 36 | mpan2 671 | . . . . . . . . . . . . . 14 |
38 | 37 | adantl 466 | . . . . . . . . . . . . 13 |
39 | simpr 461 | . . . . . . . . . . . . . . 15 | |
40 | 18 | fvmpt2 5963 | . . . . . . . . . . . . . . 15 |
41 | 39, 16, 40 | syl2anc 661 | . . . . . . . . . . . . . 14 |
42 | 28 | fvmpt2 5963 | . . . . . . . . . . . . . . 15 |
43 | 39, 26, 42 | syl2anc 661 | . . . . . . . . . . . . . 14 |
44 | 41, 43 | oveq12d 6314 | . . . . . . . . . . . . 13 |
45 | 38, 44 | eqtr4d 2501 | . . . . . . . . . . . 12 |
46 | 45 | ralrimiva 2871 | . . . . . . . . . . 11 |
47 | 46 | ad2antrr 725 | . . . . . . . . . 10 |
48 | nffvmpt1 5879 | . . . . . . . . . . . 12 | |
49 | nffvmpt1 5879 | . . . . . . . . . . . . 13 | |
50 | nfcv 2619 | . . . . . . . . . . . . 13 | |
51 | nffvmpt1 5879 | . . . . . . . . . . . . 13 | |
52 | 49, 50, 51 | nfov 6322 | . . . . . . . . . . . 12 |
53 | 48, 52 | nfeq 2630 | . . . . . . . . . . 11 |
54 | fveq2 5871 | . . . . . . . . . . . 12 | |
55 | fveq2 5871 | . . . . . . . . . . . . 13 | |
56 | fveq2 5871 | . . . . . . . . . . . . 13 | |
57 | 55, 56 | oveq12d 6314 | . . . . . . . . . . . 12 |
58 | 54, 57 | eqeq12d 2479 | . . . . . . . . . . 11 |
59 | 53, 58 | rspc 3204 | . . . . . . . . . 10 |
60 | 33, 47, 59 | sylc 60 | . . . . . . . . 9 |
61 | fvco3 5950 | . . . . . . . . . 10 | |
62 | 22, 61 | sylan 471 | . . . . . . . . 9 |
63 | fvco3 5950 | . . . . . . . . . . 11 | |
64 | 22, 63 | sylan 471 | . . . . . . . . . 10 |
65 | fvco3 5950 | . . . . . . . . . . 11 | |
66 | 22, 65 | sylan 471 | . . . . . . . . . 10 |
67 | 64, 66 | oveq12d 6314 | . . . . . . . . 9 |
68 | 60, 62, 67 | 3eqtr4d 2508 | . . . . . . . 8 |
69 | 15, 25, 32, 68 | seradd 12149 | . . . . . . 7 |
70 | fveq2 5871 | . . . . . . . 8 | |
71 | 17, 27 | addcld 9636 | . . . . . . . . . 10 |
72 | 71, 35 | fmptd 6055 | . . . . . . . . 9 |
73 | 72 | ffvelrnda 6031 | . . . . . . . 8 |
74 | 70, 13, 20, 73, 62 | fsum 13542 | . . . . . . 7 |
75 | fveq2 5871 | . . . . . . . . 9 | |
76 | 19 | ffvelrnda 6031 | . . . . . . . . 9 |
77 | 75, 13, 20, 76, 64 | fsum 13542 | . . . . . . . 8 |
78 | fveq2 5871 | . . . . . . . . 9 | |
79 | 29 | ffvelrnda 6031 | . . . . . . . . 9 |
80 | 78, 13, 20, 79, 66 | fsum 13542 | . . . . . . . 8 |
81 | 77, 80 | oveq12d 6314 | . . . . . . 7 |
82 | 69, 74, 81 | 3eqtr4d 2508 | . . . . . 6 |
83 | sumfc 13531 | . . . . . 6 | |
84 | sumfc 13531 | . . . . . . 7 | |
85 | sumfc 13531 | . . . . . . 7 | |
86 | 84, 85 | oveq12i 6308 | . . . . . 6 |
87 | 82, 83, 86 | 3eqtr3g 2521 | . . . . 5 |
88 | 87 | expr 615 | . . . 4 |
89 | 88 | exlimdv 1724 | . . 3 |
90 | 89 | expimpd 603 | . 2 |
91 | fsumadd.1 | . . 3 | |
92 | fz1f1o 13532 | . . 3 | |
93 | 91, 92 | syl 16 | . 2 |
94 | 12, 90, 93 | mpjaod 381 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 \/ wo 368
/\ wa 369 = wceq 1395 E. wex 1612
e. wcel 1818 A. wral 2807 cvv 3109
c0 3784 e. cmpt 4510 o. ccom 5008
--> wf 5589 -1-1-onto-> wf1o 5592 ` cfv 5593 (class class class)co 6296
cfn 7536 cc 9511 0 cc0 9513 1 c1 9514
caddc 9516 cn 10561 cuz 11110
cfz 11701 seq cseq 12107 chash 12405 sum_ csu 13508 |
This theorem is referenced by: fsumsplit 13562 fsumsub 13603 binomlem 13641 pcbc 14419 csbren 21826 trirn 21827 ovollb2lem 21899 ovoliunlem1 21913 itg1addlem5 22107 itgsplit 22242 plyaddlem1 22610 basellem8 23361 logfaclbnd 23497 dchrvmasum2if 23682 mudivsum 23715 logsqvma 23727 selberglem1 23730 selberglem2 23731 selberg 23733 selberg2 23736 selberg3lem1 23742 selberg4 23746 pntsval2 23761 ax5seglem9 24240 binomfallfaclem2 29162 dvnmul 31740 dirkertrigeqlem2 31881 altgsumbcALT 32942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-inf2 8079 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-fal 1401 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-oadd 7153 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-sup 7921 df-oi 7956 df-card 8341 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-2 10619 df-3 10620 df-n0 10821 df-z 10890 df-uz 11111 df-rp 11250 df-fz 11702 df-fzo 11825 df-seq 12108 df-exp 12167 df-hash 12406 df-cj 12932 df-re 12933 df-im 12934 df-sqrt 13068 df-abs 13069 df-clim 13311 df-sum 13509 |
Copyright terms: Public domain | W3C validator |