![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fsumrev | Unicode version |
Description: Reversal of a finite sum. (Contributed by NM, 26-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.) |
Ref | Expression |
---|---|
fsumrev.1 | |
fsumrev.2 | |
fsumrev.3 | |
fsumrev.4 | |
fsumrev.5 |
Ref | Expression |
---|---|
fsumrev |
M
, ,N
, ,,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsumrev.5 | . 2 | |
2 | fzfid 12083 | . 2 | |
3 | ovex 6324 | . . . . 5 | |
4 | eqid 2457 | . . . . 5 | |
5 | 3, 4 | fnmpti 5714 | . . . 4 |
6 | 5 | a1i 11 | . . 3 |
7 | ovex 6324 | . . . . 5 | |
8 | eqid 2457 | . . . . 5 | |
9 | 7, 8 | fnmpti 5714 | . . . 4 |
10 | simprr 757 | . . . . . . . . 9 | |
11 | simprl 756 | . . . . . . . . . 10 | |
12 | fsumrev.2 | . . . . . . . . . . . 12 | |
13 | 12 | adantr 465 | . . . . . . . . . . 11 |
14 | fsumrev.3 | . . . . . . . . . . . 12 | |
15 | 14 | adantr 465 | . . . . . . . . . . 11 |
16 | fsumrev.1 | . . . . . . . . . . . 12 | |
17 | 16 | adantr 465 | . . . . . . . . . . 11 |
18 | elfzelz 11717 | . . . . . . . . . . . 12 | |
19 | 11, 18 | syl 16 | . . . . . . . . . . 11 |
20 | fzrev 11771 | . . . . . . . . . . 11 | |
21 | 13, 15, 17, 19, 20 | syl22anc 1229 | . . . . . . . . . 10 |
22 | 11, 21 | mpbid 210 | . . . . . . . . 9 |
23 | 10, 22 | eqeltrd 2545 | . . . . . . . 8 |
24 | 10 | oveq2d 6312 | . . . . . . . . 9 |
25 | zcn 10894 | . . . . . . . . . . 11 | |
26 | zcn 10894 | . . . . . . . . . . 11 | |
27 | nncan 9871 | . . . . . . . . . . 11 | |
28 | 25, 26, 27 | syl2an 477 | . . . . . . . . . 10 |
29 | 17, 19, 28 | syl2anc 661 | . . . . . . . . 9 |
30 | 24, 29 | eqtr2d 2499 | . . . . . . . 8 |
31 | 23, 30 | jca 532 | . . . . . . 7 |
32 | simprr 757 | . . . . . . . . 9 | |
33 | simprl 756 | . . . . . . . . . 10 | |
34 | 12 | adantr 465 | . . . . . . . . . . 11 |
35 | 14 | adantr 465 | . . . . . . . . . . 11 |
36 | 16 | adantr 465 | . . . . . . . . . . 11 |
37 | elfzelz 11717 | . . . . . . . . . . . 12 | |
38 | 33, 37 | syl 16 | . . . . . . . . . . 11 |
39 | fzrev2 11772 | . . . . . . . . . . 11 | |
40 | 34, 35, 36, 38, 39 | syl22anc 1229 | . . . . . . . . . 10 |
41 | 33, 40 | mpbid 210 | . . . . . . . . 9 |
42 | 32, 41 | eqeltrd 2545 | . . . . . . . 8 |
43 | 32 | oveq2d 6312 | . . . . . . . . 9 |
44 | zcn 10894 | . . . . . . . . . . 11 | |
45 | nncan 9871 | . . . . . . . . . . 11 | |
46 | 25, 44, 45 | syl2an 477 | . . . . . . . . . 10 |
47 | 36, 38, 46 | syl2anc 661 | . . . . . . . . 9 |
48 | 43, 47 | eqtr2d 2499 | . . . . . . . 8 |
49 | 42, 48 | jca 532 | . . . . . . 7 |
50 | 31, 49 | impbida 832 | . . . . . 6 |
51 | 50 | mptcnv 5413 | . . . . 5 |
52 | 51 | fneq1d 5676 | . . . 4 |
53 | 9, 52 | mpbiri 233 | . . 3 |
54 | dff1o4 5829 | . . 3 | |
55 | 6, 53, 54 | sylanbrc 664 | . 2 |
56 | oveq2 6304 | . . . 4 | |
57 | 56, 4, 7 | fvmpt 5956 | . . 3 |
58 | 57 | adantl 466 | . 2 |
59 | fsumrev.4 | . 2 | |
60 | 1, 2, 55, 58, 59 | fsumf1o 13545 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
e. cmpt 4510 `' ccnv 5003 Fn wfn 5588
-1-1-onto-> wf1o 5592
` cfv 5593 (class class class)co 6296
cc 9511 cmin 9828 cz 10889 cfz 11701 sum_ csu 13508 |
This theorem is referenced by: fsumrev2 13597 birthdaylem2 23282 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-inf2 8079 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-fal 1401 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-oadd 7153 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-sup 7921 df-oi 7956 df-card 8341 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-2 10619 df-3 10620 df-n0 10821 df-z 10890 df-uz 11111 df-rp 11250 df-fz 11702 df-fzo 11825 df-seq 12108 df-exp 12167 df-hash 12406 df-cj 12932 df-re 12933 df-im 12934 df-sqrt 13068 df-abs 13069 df-clim 13311 df-sum 13509 |
Copyright terms: Public domain | W3C validator |