![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fsuppmapnn0fiub0 | Unicode version |
Description: If all functions of a finite set of functions over the nonnegative integers are finitely supported, then all these functions are zero for all integers greater than a fixed integer. (Contributed by AV, 3-Oct-2019.) |
Ref | Expression |
---|---|
fsuppmapnn0fiub0 |
M
, ,, ,, ,, ,M
, , ,,,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsuppmapnn0fiubex 12098 | . 2 | |
2 | ssel2 3498 | . . . . . . . . . . . . . 14 | |
3 | 2 | ancoms 453 | . . . . . . . . . . . . 13 |
4 | elmapfn 7461 | . . . . . . . . . . . . 13 | |
5 | 3, 4 | syl 16 | . . . . . . . . . . . 12 |
6 | 5 | expcom 435 | . . . . . . . . . . 11 |
7 | 6 | 3ad2ant1 1017 | . . . . . . . . . 10 |
8 | 7 | adantr 465 | . . . . . . . . 9 |
9 | 8 | imp 429 | . . . . . . . 8 |
10 | nn0ex 10826 | . . . . . . . . 9 | |
11 | 10 | a1i 11 | . . . . . . . 8 |
12 | simpll3 1037 | . . . . . . . 8 | |
13 | suppvalfn 6925 | . . . . . . . 8 | |
14 | 9, 11, 12, 13 | syl3anc 1228 | . . . . . . 7 |
15 | 14 | sseq1d 3530 | . . . . . 6 |
16 | rabss 3576 | . . . . . 6 | |
17 | 15, 16 | syl6bb 261 | . . . . 5 |
18 | nne 2658 | . . . . . . . . . . 11 | |
19 | 18 | biimpi 194 | . . . . . . . . . 10 |
20 | 19 | a1d 25 | . . . . . . . . 9 |
21 | 20 | a1d 25 | . . . . . . . 8 |
22 | elfz2nn0 11798 | . . . . . . . . 9 | |
23 | nn0re 10829 | . . . . . . . . . . . . 13 | |
24 | nn0re 10829 | . . . . . . . . . . . . 13 | |
25 | lenlt 9684 | . . . . . . . . . . . . 13 | |
26 | 23, 24, 25 | syl2an 477 | . . . . . . . . . . . 12 |
27 | pm2.21 108 | . . . . . . . . . . . 12 | |
28 | 26, 27 | syl6bi 228 | . . . . . . . . . . 11 |
29 | 28 | 3impia 1193 | . . . . . . . . . 10 |
30 | 29 | a1d 25 | . . . . . . . . 9 |
31 | 22, 30 | sylbi 195 | . . . . . . . 8 |
32 | 21, 31 | ja 161 | . . . . . . 7 |
33 | 32 | com12 31 | . . . . . 6 |
34 | 33 | ralimdva 2865 | . . . . 5 |
35 | 17, 34 | sylbid 215 | . . . 4 |
36 | 35 | ralimdva 2865 | . . 3 |
37 | 36 | reximdva 2932 | . 2 |
38 | 1, 37 | syld 44 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 /\ w3a 973
= wceq 1395 e. wcel 1818 =/= wne 2652
A. wral 2807 E. wrex 2808 { crab 2811
cvv 3109
C_ wss 3475 class class class wbr 4452
Fn wfn 5588 ` cfv 5593 (class class class)co 6296
csupp 6918 cmap 7439
cfn 7536 cfsupp 7849 cr 9512 0 cc0 9513 clt 9649 cle 9650 cn0 10820
cfz 11701 |
This theorem is referenced by: pmatcoe1fsupp 19202 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-supp 6919 df-recs 7061 df-rdg 7095 df-1o 7149 df-oadd 7153 df-er 7330 df-map 7441 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-fsupp 7850 df-sup 7921 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-nn 10562 df-n0 10821 df-z 10890 df-uz 11111 df-fz 11702 |
Copyright terms: Public domain | W3C validator |