![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fsuppmapnn0fiublem | Unicode version |
Description: Lemma for fsuppmapnn0fiub 12097 and fsuppmapnn0fiubex 12098. (Contributed by AV, 2-Oct-2019.) |
Ref | Expression |
---|---|
fsuppmapnn0fiub.u | |
fsuppmapnn0fiub.s |
Ref | Expression |
---|---|
fsuppmapnn0fiublem |
M
, , , ,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsuppmapnn0fiub.u | . . . 4 | |
2 | nfv 1707 | . . . . . . 7 | |
3 | nfra1 2838 | . . . . . . . 8 | |
4 | nfv 1707 | . . . . . . . 8 | |
5 | 3, 4 | nfan 1928 | . . . . . . 7 |
6 | 2, 5 | nfan 1928 | . . . . . 6 |
7 | suppssdm 6931 | . . . . . . . 8 | |
8 | ssel2 3498 | . . . . . . . . . . . . 13 | |
9 | elmapfn 7461 | . . . . . . . . . . . . 13 | |
10 | fndm 5685 | . . . . . . . . . . . . . 14 | |
11 | eqimss 3555 | . . . . . . . . . . . . . 14 | |
12 | 10, 11 | syl 16 | . . . . . . . . . . . . 13 |
13 | 8, 9, 12 | 3syl 20 | . . . . . . . . . . . 12 |
14 | 13 | ex 434 | . . . . . . . . . . 11 |
15 | 14 | 3ad2ant1 1017 | . . . . . . . . . 10 |
16 | 15 | adantr 465 | . . . . . . . . 9 |
17 | 16 | imp 429 | . . . . . . . 8 |
18 | 7, 17 | syl5ss 3514 | . . . . . . 7 |
19 | 18 | ex 434 | . . . . . 6 |
20 | 6, 19 | ralrimi 2857 | . . . . 5 |
21 | iunss 4371 | . . . . 5 | |
22 | 20, 21 | sylibr 212 | . . . 4 |
23 | 1, 22 | syl5eqss 3547 | . . 3 |
24 | ltso 9686 | . . . . 5 | |
25 | 24 | a1i 11 | . . . 4 |
26 | simp2 997 | . . . . . 6 | |
27 | id 22 | . . . . . . . . 9 | |
28 | 27 | fsuppimpd 7856 | . . . . . . . 8 |
29 | 28 | ralimi 2850 | . . . . . . 7 |
30 | 29 | adantr 465 | . . . . . 6 |
31 | iunfi 7828 | . . . . . 6 | |
32 | 26, 30, 31 | syl2an 477 | . . . . 5 |
33 | 1, 32 | syl5eqel 2549 | . . . 4 |
34 | simprr 757 | . . . 4 | |
35 | 8, 9, 10 | 3syl 20 | . . . . . . . . . . . . 13 |
36 | 35 | ex 434 | . . . . . . . . . . . 12 |
37 | 36 | 3ad2ant1 1017 | . . . . . . . . . . 11 |
38 | 37 | adantr 465 | . . . . . . . . . 10 |
39 | 38 | imp 429 | . . . . . . . . 9 |
40 | nn0ssre 10824 | . . . . . . . . 9 | |
41 | 39, 40 | syl6eqss 3553 | . . . . . . . 8 |
42 | 7, 41 | syl5ss 3514 | . . . . . . 7 |
43 | 42 | ex 434 | . . . . . 6 |
44 | 6, 43 | ralrimi 2857 | . . . . 5 |
45 | 1 | sseq1i 3527 | . . . . . 6 |
46 | iunss 4371 | . . . . . 6 | |
47 | 45, 46 | bitri 249 | . . . . 5 |
48 | 44, 47 | sylibr 212 | . . . 4 |
49 | fsuppmapnn0fiub.s | . . . . 5 | |
50 | fisupcl 7948 | . . . . 5 | |
51 | 49, 50 | syl5eqel 2549 | . . . 4 |
52 | 25, 33, 34, 48, 51 | syl13anc 1230 | . . 3 |
53 | 23, 52 | sseldd 3504 | . 2 |
54 | 53 | ex 434 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
/\ w3a 973 = wceq 1395 e. wcel 1818
=/= wne 2652 A. wral 2807 C_ wss 3475
c0 3784 U_ ciun 4330 class class class wbr 4452
Or wor 4804 dom cdm 5004 Fn wfn 5588
(class class class)co 6296 csupp 6918 cmap 7439
cfn 7536 cfsupp 7849 sup csup 7920
cr 9512 clt 9649 cn0 10820 |
This theorem is referenced by: fsuppmapnn0fiub 12097 fsuppmapnn0fiubex 12098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-i2m1 9581 ax-1ne0 9582 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-supp 6919 df-recs 7061 df-rdg 7095 df-1o 7149 df-oadd 7153 df-er 7330 df-map 7441 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-fsupp 7850 df-sup 7921 df-pnf 9651 df-mnf 9652 df-ltxr 9654 df-nn 10562 df-n0 10821 |
Copyright terms: Public domain | W3C validator |