![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fsuppun | Unicode version |
Description: The union of two finitely supported functions is finitely supported (but not necessarily a function!). (Contributed by AV, 3-Jun-2019.) |
Ref | Expression |
---|---|
fsuppun.f | |
fsuppun.g |
Ref | Expression |
---|---|
fsuppun |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvun 5416 | . . . . . . 7 | |
2 | 1 | imaeq1i 5339 | . . . . . 6 |
3 | imaundir 5424 | . . . . . 6 | |
4 | 2, 3 | eqtri 2486 | . . . . 5 |
5 | unexb 6600 | . . . . . . . . . . 11 | |
6 | simpl 457 | . . . . . . . . . . 11 | |
7 | 5, 6 | sylbir 213 | . . . . . . . . . 10 |
8 | suppimacnv 6929 | . . . . . . . . . 10 | |
9 | 7, 8 | sylan 471 | . . . . . . . . 9 |
10 | 9 | eqcomd 2465 | . . . . . . . 8 |
11 | 10 | adantr 465 | . . . . . . 7 |
12 | fsuppun.f | . . . . . . . . 9 | |
13 | 12 | fsuppimpd 7856 | . . . . . . . 8 |
14 | 13 | adantl 466 | . . . . . . 7 |
15 | 11, 14 | eqeltrd 2545 | . . . . . 6 |
16 | simpr 461 | . . . . . . . . . 10 | |
17 | 5, 16 | sylbir 213 | . . . . . . . . 9 |
18 | suppimacnv 6929 | . . . . . . . . . 10 | |
19 | 18 | eqcomd 2465 | . . . . . . . . 9 |
20 | 17, 19 | sylan 471 | . . . . . . . 8 |
21 | 20 | adantr 465 | . . . . . . 7 |
22 | fsuppun.g | . . . . . . . . 9 | |
23 | 22 | fsuppimpd 7856 | . . . . . . . 8 |
24 | 23 | adantl 466 | . . . . . . 7 |
25 | 21, 24 | eqeltrd 2545 | . . . . . 6 |
26 | unfi 7807 | . . . . . 6 | |
27 | 15, 25, 26 | syl2anc 661 | . . . . 5 |
28 | 4, 27 | syl5eqel 2549 | . . . 4 |
29 | suppimacnv 6929 | . . . . . 6 | |
30 | 29 | eleq1d 2526 | . . . . 5 |
31 | 30 | adantr 465 | . . . 4 |
32 | 28, 31 | mpbird 232 | . . 3 |
33 | 32 | ex 434 | . 2 |
34 | supp0prc 6921 | . . . 4 | |
35 | 0fin 7767 | . . . 4 | |
36 | 34, 35 | syl6eqel 2553 | . . 3 |
37 | 36 | a1d 25 | . 2 |
38 | 33, 37 | pm2.61i 164 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 = wceq 1395
e. wcel 1818 cvv 3109
\ cdif 3472 u. cun 3473 c0 3784 { csn 4029 class class class wbr 4452
`' ccnv 5003 " cima 5007 (class class class)co 6296
csupp 6918 cfn 7536 cfsupp 7849 |
This theorem is referenced by: fsuppunbi 7870 gsumzaddlem 16934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-supp 6919 df-recs 7061 df-rdg 7095 df-oadd 7153 df-er 7330 df-en 7537 df-fin 7540 df-fsupp 7850 |
Copyright terms: Public domain | W3C validator |