![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ftp | Unicode version |
Description: A function with a domain of three elements. (Contributed by Stefan O'Rear, 17-Oct-2014.) (Proof shortened by Alexander van der Vekens, 23-Jan-2018.) |
Ref | Expression |
---|---|
ftp.a | |
ftp.b | |
ftp.c | |
ftp.d | |
ftp.e | |
ftp.f | |
ftp.g | |
ftp.h | |
ftp.i |
Ref | Expression |
---|---|
ftp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ftp.a | . . 3 | |
2 | ftp.b | . . 3 | |
3 | ftp.c | . . 3 | |
4 | 1, 2, 3 | 3pm3.2i 1174 | . 2 |
5 | ftp.d | . . 3 | |
6 | ftp.e | . . 3 | |
7 | ftp.f | . . 3 | |
8 | 5, 6, 7 | 3pm3.2i 1174 | . 2 |
9 | ftp.g | . . 3 | |
10 | ftp.h | . . 3 | |
11 | ftp.i | . . 3 | |
12 | 9, 10, 11 | 3pm3.2i 1174 | . 2 |
13 | ftpg 6081 | . 2 | |
14 | 4, 8, 12, 13 | mp3an 1324 | 1 |
Colors of variables: wff setvar class |
Syntax hints: /\ w3a 973 e. wcel 1818
=/= wne 2652 cvv 3109
{ ctp 4033 <. cop 4035 --> wf 5589 |
This theorem is referenced by: constr3trllem1 24650 rabren3dioph 30749 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-br 4453 df-opab 4511 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 |
Copyright terms: Public domain | W3C validator |