![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ftpg | Unicode version |
Description: A function with a domain of three elements. (Contributed by Alexander van der Vekens, 4-Dec-2017.) |
Ref | Expression |
---|---|
ftpg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpa 993 | . . . 4 | |
2 | 3simpa 993 | . . . 4 | |
3 | simp1 996 | . . . 4 | |
4 | fprg 6080 | . . . 4 | |
5 | 1, 2, 3, 4 | syl3an 1270 | . . 3 |
6 | eqidd 2458 | . . . 4 | |
7 | simp3 998 | . . . . . . 7 | |
8 | simp3 998 | . . . . . . 7 | |
9 | 7, 8 | anim12i 566 | . . . . . 6 |
10 | 9 | 3adant3 1016 | . . . . 5 |
11 | fsng 6070 | . . . . 5 | |
12 | 10, 11 | syl 16 | . . . 4 |
13 | 6, 12 | mpbird 232 | . . 3 |
14 | elpri 4049 | . . . . . . . 8 | |
15 | eqcom 2466 | . . . . . . . . . . . 12 | |
16 | nne 2658 | . . . . . . . . . . . 12 | |
17 | 15, 16 | bitr4i 252 | . . . . . . . . . . 11 |
18 | eqcom 2466 | . . . . . . . . . . . 12 | |
19 | nne 2658 | . . . . . . . . . . . 12 | |
20 | 18, 19 | bitr4i 252 | . . . . . . . . . . 11 |
21 | 17, 20 | orbi12i 521 | . . . . . . . . . 10 |
22 | 21 | biimpi 194 | . . . . . . . . 9 |
23 | ianor 488 | . . . . . . . . 9 | |
24 | 22, 23 | sylibr 212 | . . . . . . . 8 |
25 | 14, 24 | syl 16 | . . . . . . 7 |
26 | 25 | con2i 120 | . . . . . 6 |
27 | 26 | 3adant1 1014 | . . . . 5 |
28 | 27 | 3ad2ant3 1019 | . . . 4 |
29 | disjsn 4090 | . . . 4 | |
30 | 28, 29 | sylibr 212 | . . 3 |
31 | fun 5753 | . . 3 | |
32 | 5, 13, 30, 31 | syl21anc 1227 | . 2 |
33 | df-tp 4034 | . . . 4 | |
34 | 33 | feq1i 5728 | . . 3 |
35 | df-tp 4034 | . . . 4 | |
36 | df-tp 4034 | . . . 4 | |
37 | 35, 36 | feq23i 5730 | . . 3 |
38 | 34, 37 | bitri 249 | . 2 |
39 | 32, 38 | sylibr 212 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 \/ wo 368 /\ wa 369
/\ w3a 973 = wceq 1395 e. wcel 1818
=/= wne 2652 u. cun 3473 i^i cin 3474
c0 3784 { csn 4029 { cpr 4031
{ ctp 4033 <. cop 4035 --> wf 5589 |
This theorem is referenced by: ftp 6082 2trllemG 24560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-br 4453 df-opab 4511 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 |
Copyright terms: Public domain | W3C validator |