MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcnv3 Unicode version

Theorem funcnv3 5654
Description: A condition showing a class is single-rooted. (See funcnv 5653). (Contributed by NM, 26-May-2006.)
Assertion
Ref Expression
funcnv3
Distinct variable group:   , ,

Proof of Theorem funcnv3
StepHypRef Expression
1 dfrn2 5196 . . . . . 6
21abeq2i 2584 . . . . 5
32biimpi 194 . . . 4
43biantrurd 508 . . 3
54ralbiia 2887 . 2
6 funcnv 5653 . 2
7 df-reu 2814 . . . 4
8 vex 3112 . . . . . . 7
9 vex 3112 . . . . . . 7
108, 9breldm 5212 . . . . . 6
1110pm4.71ri 633 . . . . 5
1211eubii 2306 . . . 4
13 eu5 2310 . . . 4
147, 12, 133bitr2i 273 . . 3
1514ralbii 2888 . 2
165, 6, 153bitr4i 277 1
Colors of variables: wff setvar class
Syntax hints:  <->wb 184  /\wa 369  E.wex 1612  e.wcel 1818  E!weu 2282  E*wmo 2283  A.wral 2807  E!wreu 2809   class class class wbr 4452  `'ccnv 5003  domcdm 5004  rancrn 5005  Funwfun 5587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pr 4691
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-br 4453  df-opab 4511  df-id 4800  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-fun 5595
  Copyright terms: Public domain W3C validator