MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funforn Unicode version

Theorem funforn 5807
Description: A function maps its domain onto its range. (Contributed by NM, 23-Jul-2004.)
Assertion
Ref Expression
funforn

Proof of Theorem funforn
StepHypRef Expression
1 funfn 5622 . 2
2 dffn4 5806 . 2
31, 2bitri 249 1
Colors of variables: wff setvar class
Syntax hints:  <->wb 184  domcdm 5004  rancrn 5005  Funwfun 5587  Fnwfn 5588  -onto->wfo 5591
This theorem is referenced by:  imacosupp  6959  ordtypelem8  7971  wdomima2g  8033  imadomg  8933  gruima  9201  oppglsm  16662  1stcrestlem  19953  dfac14  20119  qtoptop2  20200  fimacnvinrn  27475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-an 371  df-cleq 2449  df-fn 5596  df-fo 5599
  Copyright terms: Public domain W3C validator