MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funopfv Unicode version

Theorem funopfv 5912
Description: The second element in an ordered pair member of a function is the function's value. (Contributed by NM, 19-Jul-1996.)
Assertion
Ref Expression
funopfv

Proof of Theorem funopfv
StepHypRef Expression
1 df-br 4453 . 2
2 funbrfv 5911 . 2
31, 2syl5bir 218 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  =wceq 1395  e.wcel 1818  <.cop 4035   class class class wbr 4452  Funwfun 5587  `cfv 5593
This theorem is referenced by:  fvopab3ig  5953  fvsn  6104  fveqf1o  6205  ovidig  6420  ovigg  6423  f1o2ndf1  6908  fundmen  7609  uzrdg0i  12070  uzrdgsuci  12071  strfvd  14663  strfv2d  14664  imasaddvallem  14926  imasvscafn  14934  adjeq  26854  bnj1379  33889  bnj97  33924  bnj553  33956  bnj966  34002  bnj1442  34105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pr 4691
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-uni 4250  df-br 4453  df-opab 4511  df-id 4800  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-iota 5556  df-fun 5595  df-fv 5601
  Copyright terms: Public domain W3C validator