MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funresdfunsn Unicode version

Theorem funresdfunsn 6113
Description: Restricting a function to a domain without one element of the domain of the function, and adding a pair of this element and the function value of the element results in the function itself. (Contributed by AV, 2-Dec-2018.)
Assertion
Ref Expression
funresdfunsn

Proof of Theorem funresdfunsn
StepHypRef Expression
1 funrel 5610 . . . . 5
2 resdmdfsn 5324 . . . . 5
31, 2syl 16 . . . 4
43adantr 465 . . 3
54uneq1d 3656 . 2
6 funfn 5622 . . 3
7 fnsnsplit 6108 . . 3
86, 7sylanb 472 . 2
95, 8eqtr4d 2501 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  /\wa 369  =wceq 1395  e.wcel 1818   cvv 3109  \cdif 3472  u.cun 3473  {csn 4029  <.cop 4035  domcdm 5004  |`cres 5006  Relwrel 5009  Funwfun 5587  Fnwfn 5588  `cfv 5593
This theorem is referenced by:  setsidvald  32557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pr 4691
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-uni 4250  df-br 4453  df-opab 4511  df-id 4800  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017  df-iota 5556  df-fun 5595  df-fn 5596  df-f 5597  df-f1 5598  df-fo 5599  df-f1o 5600  df-fv 5601
  Copyright terms: Public domain W3C validator