![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > funresdfunsn | Unicode version |
Description: Restricting a function to a domain without one element of the domain of the function, and adding a pair of this element and the function value of the element results in the function itself. (Contributed by AV, 2-Dec-2018.) |
Ref | Expression |
---|---|
funresdfunsn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funrel 5610 | . . . . 5 | |
2 | resdmdfsn 5324 | . . . . 5 | |
3 | 1, 2 | syl 16 | . . . 4 |
4 | 3 | adantr 465 | . . 3 |
5 | 4 | uneq1d 3656 | . 2 |
6 | funfn 5622 | . . 3 | |
7 | fnsnsplit 6108 | . . 3 | |
8 | 6, 7 | sylanb 472 | . 2 |
9 | 5, 8 | eqtr4d 2501 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 e. wcel 1818 cvv 3109
\ cdif 3472 u. cun 3473 { csn 4029
<. cop 4035 dom cdm 5004 |` cres 5006
Rel wrel 5009
Fun wfun 5587
Fn wfn 5588 ` cfv 5593 |
This theorem is referenced by: setsidvald 32557 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 |
Copyright terms: Public domain | W3C validator |